ភ្លុយអរ

ដោយវិគីភីឌា

ទំព័រគំរូ:Pp-vand

ទំព័រគំរូ:Infobox fluorine Fluorine is a chemical element with symbol F and atomic number 9. It is the lightest halogen and exists as a highly toxic pale yellow diatomic gas at standard conditions. As the most electronegative element, it is extremely reactive: almost all other elements, including some noble gases, form compounds with fluorine.

Among the elements, fluorine ranks 24th in universal abundance and 13th in terrestrial abundance. Fluorite, the primary mineral source of fluorine which gave the element its name, was first described in 1529; as it was added to metal ores to lower their melting points for smelting, the Latin verb fluo meaning "flow" gave the mineral its name. Proposed as an element in 1810, fluorine proved difficult and dangerous to separate from its compounds, and several early experimenters died or sustained injuries from their attempts. Only in 1886 did French chemist Henri Moissan isolate elemental fluorine using low-temperature electrolysis, a process still employed for modern production. Industrial production of fluorine gas for uranium enrichment, its largest application, began during the Manhattan Project in World War II.

Owing to the expense of refining pure fluorine, most commercial applications use fluorine compounds, with about half of mined fluorite used in steelmaking. The rest of the fluorite is converted into corrosive hydrogen fluoride en route to various organic fluorides, or into cryolite which plays a key role in aluminium refining. Organic fluorides have very high chemical and thermal stability; their major uses are as refrigerants, electrical insulation and cookware, the last as PTFE (Teflon). Pharmaceuticals such as atorvastatin and fluoxetine also contain fluorine, and the fluoride ion inhibits dental cavities, and so finds use in toothpaste and water fluoridation. Global fluorochemical sales amount to more than US$15 billion a year.

Fluorocarbon gases are generally greenhouse gases with global-warming potentials 100 to 20,000 times that of carbon dioxide. Organofluorine compounds persist in the environment due to the strength of the carbon–fluorine bond. Fluorine has no known metabolic role in mammals; a few plants synthesize organofluorine poisons that deter herbivores.

Characteristics[កែប្រែ]

Electron configuration[កែប្រែ]

Two concentric rings showing valence and non-valence electron shells
Simplified structure of the fluorine atom

Fluorine atoms have nine electrons, one fewer than neon, and electron configuration 1s22s22p5: two electrons in a filled inner shell and seven in an outer shell requiring one more to be filled. The outer electrons are ineffective at nuclear shielding, and experience a high effective nuclear charge of 9 − 2 = 7; this affects the atom's physical properties.[១]

Fluorine's first ionization energy is third-highest among all elements, behind helium and neon,[២] which complicates the removal of electrons from neutral fluorine atoms. It also has a high electron affinity, second only to chlorine,[៣] and tends to capture an electron to become isoelectronic with the noble gas neon;[១] it has the highest electronegativity of any element.[៤] Fluorine atoms have a small covalent radius of around 60 picometers, similar to those of its period neighbors oxygen and neon.[៥][៦][note ១] ទំព័រគំរូ:Clear left

Reactivity[កែប្រែ]

The bond energy of difluorine is much lower than that of either Cl2 or Br2 and similar to the easily cleaved peroxide bond; this, along with high electronegativity, accounts for fluorine's easy dissociation, high reactivity, and strong bonds to non-fluorine atoms.[៧][៨] Conversely, bonds to other atoms are very strong because of fluorine's high electronegativity. Unreactive substances like powdered steel, glass fragments, and asbestos fibers react quickly with cold fluorine gas; wood and water spontaneously combust under a fluorine jet.[៩][១០] ទំព័រគំរូ:External media Reactions of elemental fluorine with metals require varying conditions. Alkali metals cause explosions and alkaline earth metals display vigorous activity in bulk; to prevent passivation from the formation of metal fluoride layers, most other metals such as aluminium and iron must be powdered,[៧] and noble metals require pure fluorine gas at 300–450 °C (575–850 °F).[១១] Some solid nonmetals (sulfur, phosphorus) react vigorously in liquid air temperature fluorine.[១២] Hydrogen sulfide[១២] and sulfur dioxide[១៣] combine readily with fluorine, the latter sometimes explosively; sulfuric acid exhibits much less activity, requiring elevated temperatures.[១៤]

Hydrogen, like some of the alkali metals, reacts explosively with fluorine.[១៥] Carbon, as lamp black, reacts at room temperature to yield fluoromethane. Graphite combines with fluorine above 400 °C (750 °F) to produce non-stoichiometric carbon monofluoride; higher temperatures generate gaseous fluorocarbons, sometimes with explosions.[១៦] Carbon dioxide and carbon monoxide react at or just above room temperature,[១៧] whereas paraffins and other organic chemicals generate strong reactions:[១៨] even fully substituted haloalkanes such as carbon tetrachloride, normally incombustible, may explode.[១៩] Although nitrogen trifluoride is stable, nitrogen requires an electric discharge at elevated temperatures for reaction with fluorine to occur, due to the very strong triple bond in elemental nitrogen;[២០] ammonia may react explosively.[២១][២២] Oxygen does not combine with fluorine under ambient conditions, but can be made to react using electric discharge at low temperatures and pressures; the products tend to disintegrate into their constituent elements when heated.[២៣][២៤][២៥] Heavier halogens[២៦] react readily with fluorine as does the noble gas radon;[២៧] of the other noble gases, only xenon and krypton react, and only under special conditions.[២៨] ទំព័រគំរូ:Clear left

Phases[កែប្រែ]

Cube with spherical shapes on the corners and center and spinning molecules in planes in faces
Crystal structure of β-fluorine. Spheres indicate F2 molecules that may assume any angle. Other molecules are constrained to planes.

At room temperature, fluorine is a gas of diatomic molecules,[៩] pale yellow when pure (sometimes described as yellow-green).[២៩] It has a characteristic pungent odor detectable at 20 ppb.[៣០] Fluorine condenses into a bright yellow liquid at −188 °C (−306 °F), a transition temperature similar to those of oxygen and nitrogen.[៣១]

Fluorine has two solid forms, α- and β-fluorine. The latter crystallizes at −220 °C (−364 °F) and is transparent and soft, with the same disordered cubic structure of freshly crystallized solid oxygen,[៣១][note ២] unlike the orthorhombic systems of other solid halogens.[៣៥][៣៦] Further cooling to −228 °C (−378 °F) induces a phase transition into opaque and hard α-fluorine, which has a monoclinic structure with dense, angled layers of molecules. The transition from β- to α-fluorine is more exothermic than the condensation of fluorine, and can be violent.[៣៥][៣៦][note ៣]

Isotopes[កែប្រែ]

Only one isotope of fluorine occurs naturally in abundance, the stable isotope 19F.[៣៧] It has a high magnetogyric ratio[note ៤] and exceptional sensitivity to magnetic fields; because it is also the only stable isotope, it is used in magnetic resonance imaging.[៣៩] Seventeen radioisotopes with mass numbers from 14 to 31 have been synthesized, of which 18F is the most stable with a half-life of 109.77 minutes. Other radioisotopes have half-lives less than 70 seconds; most decay in less than half a second.[៤០] The isotopes 17F and 18F undergo β+ decay and electron capture, lighter isotopes decay by proton emission, and those heavier than 19F undergo β decay (the heaviest ones - with delayed neutron emission).[៤០][៤១] Two metastable isomers of fluorine are known, 18mF, with a half-life of 162(7) nanoseconds, and 26mF, with a half-life of 2.2(1) milliseconds.[៤២]

Occurrence[កែប្រែ]

Universe[កែប្រែ]

Solar System abundances[៤៣]
Atomic
number
Element Relative
amount
6 Carbon 4,800
7 Nitrogen 1,500
8 Oxygen 8,800
9 Fluorine 1
10 Neon 1,400
11 Sodium 24
12 Magnesium 430

Among the lighter elements, fluorine's abundance value of 400 ppb (parts per billion) – 24th among elements in the universe – is exceptional: other elements from carbon to magnesium are twenty or more times as common.[៤៤] This is because stellar nucleosynthesis processes bypass fluorine, and any fluorine atoms otherwise created have high nuclear cross sections, allowing further fusion with hydrogen or helium to generate oxygen or neon respectively.[៤៤][៤៥]

Beyond this transient existence, three explanations have been proposed for the presence of fluorine:[៤៤][៤៦]

Earth[កែប្រែ]

Fluorine is the thirteenth most common element in Earth's crust at 600–700 ppm (parts per million) by mass.[៤៧] Elemental fluorine in Earth's atmosphere would easily react with atmospheric water vapor, precluding its natural occurrence;[៤៨][៤៩] it is found only in combined mineral forms, of which fluorite, fluorapatite and cryolite are the most industrially significant.[៤៧][៥០] Fluorite or fluorspar (CaF2), colorful and abundant worldwide, is fluorine's main source; China and Mexico are the major suppliers. The U.S. led extraction in the early 20th century but ceased mining in 1995.[៥០][៥១][៥២][៥៣][៥៤] Although fluorapatite (Ca5(PO4)3F) contains most of the world's fluorine, its low mass fraction of 3.5% means that most of it is used as a phosphate. In the U.S. small quantities of fluorine compounds are obtained via fluorosilicic acid, a phosphate industry byproduct.[៥០] Cryolite (Na3AlF6), once used directly in aluminium production, is the rarest and most concentrated of these three minerals. The main commercial mine on Greenland's west coast closed in 1987, and most cryolite is now synthesized.[៥០]

Major fluorine-containing minerals
Pink globular mass with crystal facets Long prism-like crystal, without luster, at an angle coming out of aggregate-like rock A parallelogram-shaped outline with space-filling diatomic molecules (joined circles) arranged in two layers
Fluorite Fluorapatite Cryolite

Other minerals such as topaz contain fluorine. Fluorides, unlike other halides, are insoluble and do not occur in commercially favorable concentrations in saline waters.[៥០] Trace quantities of organofluorines of uncertain origin have been detected in volcanic eruptions and geothermal springs.[៥៥] The existence of gaseous fluorine in crystals, suggested by the smell of crushed antozonite, is contentious;[៥៦][៥៧] a 2012 study reported the presence of 0.04% F2 by weight in antozonite, attributing these inclusions to radiation from the presence of tiny amounts of uranium.[៥៧]

History[កែប្រែ]

Early discoveries[កែប្រែ]

Woodcut image showing man at open hearth with tongs and machine bellows to the side in background, man at water-operated hammer with quenching sluice nearby in foreground
Steelmaking illustration from De re metallica

In 1529, Georgius Agricola described fluorite as an additive used to lower the melting point of metals during smelting.[៥៨][៥៩][note ៥] He penned the Latin word fluorés (fluo, flow) for fluorite rocks. The name later evolved into fluorspar (still commonly used) and then fluorite.[៥១][៦៣][៦៤] The composition of fluorite was later determined to be calcium difluoride.[៦៥]

Hydrofluoric acid was used in glass etching from 1720 onwards.[note ៦] Andreas Sigismund Marggraf first characterized it in 1764 when he heated fluorite with sulfuric acid, and the resulting solution corroded its glass container.[៦៧][៦៨] Swedish chemist Carl Wilhelm Scheele repeated the experiment in 1771, and named the acidic product fluss-spats-syran (fluorspar acid).[៦៨][៦៩] In 1810, the French physicist André-Marie Ampère suggested that hydrogen and an element analogous to chlorine constituted hydrofluoric acid.[៧០] Sir Humphry Davy proposed that this then-unknown substance be named fluorine from fluoric acid and the -ine suffix of other halogens. This word, with modifications, is used in most European languages; Greek, Russian, and some others (following Ampère's suggestion) use the name ftor or derivatives, from the Greek φθόριος (phthorios, destructive) .[៧១][៧២] The New Latin name fluorum gave the element its current symbol F; Fl was used in early papers.[៧៣][note ៧]

Isolation[កែប្រែ]

Initial studies on fluorine were so dangerous that several 19th-century experimenters were deemed "fluorine martyrs" after misfortunes with hydrofluoric acid.[note ៨] Isolation of elemental fluorine was hindered by the extreme corrosiveness of both elemental fluorine itself and hydrogen fluoride, as well as the lack of a simple and suitable electrolyte.[៦៥][៧៤] Edmond Frémy postulated that electrolysis of pure hydrofluoric acid to generate fluorine was feasible and devised a method to produce anhydrous samples from acidified potassium bifluoride; instead, he discovered that the resulting (dry) hydrogen fluoride did not conduct electricity.[៦៥][៧៤][៧៥] Frémy's former student Henri Moissan persevered, and after much trial and error found that a mixture of potassium bifluoride and dry hydrogen fluoride was a conductor, enabling electrolysis. To prevent rapid corrosion of the platinum in his electrochemical cells, he cooled the reaction to extremely low temperatures in a special bath and forged cells from a more resistant mixture of platinum and iridium, and used fluorite stoppers.[៧៤][៧៦] In 1886, after 74 years of effort by many chemists, Moissan isolated elemental fluorine.[៧៥][៧៧]

In 1906, two months before his death, Moissan received the Nobel Prize in Chemistry,[៧៨] with the following citation:[៧៤]

[I]n recognition of the great services rendered by him in his investigation and isolation of the element fluorine ... The whole world has admired the great experimental skill with which you have studied that savage beast among the elements.[note ៩]

Later uses[កែប្រែ]

An ampoule of uranium hexafluoride or hex

The Frigidaire division of General Motors (GM) experimented with chlorofluorocarbon refrigerants in the late 1920s, and Kinetic Chemicals was formed as a joint venture between GM and DuPont in 1930 hoping to market Freon-12 (CCl2F2) as one such refrigerant. It replaced earlier and more toxic compounds, increased demand for kitchen refrigerators, and became profitable; by 1949 DuPont had bought out Kinetic and marketed several other Freon compounds.[៦៨][៧៩][៨០][៨១] Polytetrafluoroethylene (Teflon) was serendipitously discovered in 1938 by Roy J. Plunkett while working on refrigerants at Kinetic, and its superlative chemical and thermal resistance lent it to accelerated commercialization and mass production by 1941.[៦៨][៧៩][៨០]

Large-scale production of elemental fluorine began during World War II. Germany used high-temperature electrolysis to make tons of the planned incendiary chlorine trifluoride[៨២] and the Manhattan Project used huge quantities to produce uranium hexafluoride for uranium enrichment. Since UF6 is as corrosive as fluorine, gaseous diffusion plants required special materials: nickel for membranes, fluoropolymers for seals, and liquid fluorocarbons as coolants and lubricants. This burgeoning nuclear industry later drove post-war fluorochemical development.[៨៣]

Compounds[កែប្រែ]

Fluorine has a rich chemistry, encompassing organic and inorganic domains. It combines with metals, nonmetals, metalloids, and most noble gases,[៨៤] and usually assumes an oxidation state of −1.[note ១០] Fluorine's high electron affinity results in a preference for ionic bonding; when it forms covalent bonds, these are polar, and almost always single.[៨៧][៨៨][note ១១]

Metals[កែប្រែ]

Alkali metals form ionic and highly soluble monofluorides; these have the cubic arrangement of sodium chloride and analogous chlorides.[៨៩][៩០] Alkaline earth difluorides possess strong ionic bonds but are insoluble in water,[៧៣] with the exception of beryllium difluoride, which also exhibits some covalent character and has a quartz-like structure.[៩១] Rare earth elements and many other metals form mostly ionic trifluorides.[៩២][៩៣][៩៤]

Covalent bonding first comes to prominence in the tetrafluorides: those of zirconium, hafnium[៩៥][៩៦] and several actinides[៩៧] are ionic with high melting points,[៩៨][note ១២] while those of titanium,[១០១] vanadium,[១០២] and niobium are polymeric,[១០៣] melting or decomposing at no more than 350 °C (660 °F).[១០៤] Pentafluorides continue this trend with their linear polymers and oligomeric complexes.[១០៥][១០៦][១០៧] Thirteen metal hexafluorides are known,[note ១៣] all octahedral, and are mostly volatile solids but for liquid MoF6 and ReF6, and gaseous WF6.[១០៨][១០៩][១១០] Rhenium heptafluoride, the only characterized metal heptafluoride, is a low-melting molecular solid with pentagonal bipyramidal molecular geometry.[១១១] Metal fluorides with more fluorine atoms are particularly reactive.[១១២]

Structural progression of metal fluorides
Checkerboard-like lattice of small blue and large yellow balls, going in three dimensions so that each ball has 6 nearest neighbors of opposite type Straight chain of alternating balls, violet and yellow, with violet ones also linked to four more yellow perpendicularly to the chain and each other Ball and stick drawing showing central violet ball with a yellow one directly above and below and then an equatorial belt of 5 surrounding yellow balls
Sodium fluoride, ionic Bismuth pentafluoride, polymeric Rhenium heptafluoride, molecular

Hydrogen[កែប្រែ]

Graph showing water and hydrogen fluoride breaking the trend of lower boiling points for lighter molecules
Boiling points of hydrogen halides and chalcogenides, showing the unusually high values for hydrogen fluoride and water

Hydrogen and fluorine combine to yield hydrogen fluoride, in which discrete molecules form clusters by hydrogen bonding, resembling water more than hydrogen chloride.[១១៣][១១៤][១១៥] It boils at a much higher temperature than heavier hydrogen halides and unlike them is fully miscible with water.[១១៦] Hydrogen fluoride readily hydrates on contact with water to form aqueous hydrogen fluoride, also known as hydrofluoric acid. Unlike the other hydrohalic acids, which are strong, hydrofluoric acid is a weak acid at low concentrations.[១១៧][note ១៤] However, it can attack glass, something the other acids cannot do.[១១៩]

Other reactive nonmetals[កែប្រែ]

Metalloids are included in this section
Chlorine trifluoride, whose corrosive potential ignites asbestos, concrete, sand and other fire retardants[១២០]

Binary fluorides of metalloids and p-block nonmetals are generally covalent and volatile, with varying reactivities. Period 3 and heavier nonmetals can form hypervalent fluorides.[១២១]

Boron trifluoride is planar and possesses an incomplete octet. It functions as a Lewis acid and combines with Lewis bases like ammonia to form adducts.[១២២] Carbon tetrafluoride is tetrahedral and inert;[note ១៥] its group analogues, silicon and germanium tetrafluoride, are also tetrahedral[១២៣] but behave as Lewis acids.[១២៤][១២៥] The pnictogens form trifluorides that increase in reactivity and basicity with higher molecular weight, although nitrogen trifluoride resists hydrolysis and is not basic.[១២៦] The pentafluorides of phosphorus, arsenic, and antimony are more reactive than their respective trifluorides, with antimony pentafluoride the strongest neutral Lewis acid known.[១០៥][១២៧][១២៨]

Chalcogens have diverse fluorides: unstable difluorides have been reported for oxygen (the only known compound with oxygen in an oxidation state of +2), sulfur, and selenium; tetrafluorides and hexafluorides exist for sulfur, selenium, and tellurium. The latter are stabilized by more fluorine atoms and lighter central atoms, so sulfur hexafluoride is especially inert.[១២៩][១៣០] Chlorine, bromine, and iodine can each form mono-, tri-, and pentafluorides, but only iodine heptafluoride has been characterized among possible interhalogen heptafluorides.[១៣១] Many of them are powerful sources of fluorine atoms, and industrial applications using chlorine trifluoride require precautions similar to those using fluorine.[១៣២][១៣៣]

Noble gases[កែប្រែ]

Black-and-white photo showing transparent crystals in a dish
These xenon tetrafluoride crystals were photographed in 1962. The compound's synthesis, as with xenon hexafluoroplatinate, surprised many chemists.[១៣៤]

Noble gases, having complete electron shells, defied reaction with other elements until 1962 when Neil Bartlett reported synthesis of xenon hexafluoroplatinate;[១៣៥] xenon difluoride, tetrafluoride, hexafluoride, and multiple oxyfluorides have been isolated since then.[១៣៦] Among other noble gases, krypton forms a difluoride,[១៣៧] and radon and fluorine generate a solid suspected to be radon difluoride.[១៣៨][១៣៩] Binary fluorides of lighter noble gases are exceptionally unstable: argon and hydrogen fluoride combine under extreme conditions to give argon fluorohydride.[២៨] Helium and neon have no long-lived fluorides,[១៤០] and no neon fluoride has ever been observed;[១៤១] helium fluorohydride has been detected for milliseconds at high pressures and low temperatures.[១៤០]

Organic compounds[កែប្រែ]

Beaker with two layers of liquid, goldfish and crab in top, coin sunk in the bottom
Immiscible layers of colored water (top) and much denser perfluoroheptane (bottom) in a beaker; a goldfish and crab cannot penetrate the boundary; quarters rest at the bottom.
Skeletal chemical formula
Chemical structure of Nafion, a fluoropolymer used in fuel cells and many other applications[១៤២]

The carbon–fluorine bond is organic chemistry's strongest,[១៤៣] and gives stability to organofluorines.[១៤៤] It is almost non-existent in nature, but is used in artificial compounds. Research in this area is usually driven by commercial applications;[១៤៥] the compounds involved are diverse and reflect the complexity inherent in organic chemistry.[៧៩]

Discrete molecules[កែប្រែ]

The substitution of hydrogen atoms in an alkane by progressively more fluorine atoms gradually alters several properties: melting and boiling points are lowered, density increases, solubility in hydrocarbons decreases and overall stability increases. Perfluorocarbons,[note ១៦] in which all hydrogen atoms are substituted, are insoluble in most organic solvents, reacting at ambient conditions only with sodium in liquid ammonia.[១៤៦]

The term perfluorinated compound is used for what would otherwise be a perfluorocarbon if not for the presence of a functional group,[១៤៧][note ១៧] often a carboxylic acid. These compounds share many properties with perfluorocarbons such as stability and hydrophobicity,[១៤៩] while the functional group augments their reactivity, enabling them to adhere to surfaces or act as surfactants;[១៥០] Fluorosurfactants, in particular, can lower the surface tension of water more than their hydrocarbon-based analogues. Fluorotelomers, which have some unfluorinated carbon atoms near the functional group, are also regarded as perfluorinated.[១៤៩]

Polymers[កែប្រែ]

Polymers exhibit the same stability increases afforded by fluorine substitution (for hydrogen) in discrete molecules; their melting points generally increase too.[១៥១] Polytetrafluoroethylene (PTFE), the simplest fluoropolymer and perfluoro analogue of polyethylene with structural unitCF2–, demonstrates this change as expected, but its very high melting point makes it difficult to mold.[១៥២] Various PTFE derivatives are less temperature-tolerant but easier to mold: fluorinated ethylene propylene replaces some fluorine atoms with trifluoromethyl groups, perfluoroalkoxy alkanes do the same with trifluoromethoxy groups,[១៥២] and Nafion contains perfluoroether side chains capped with sulfonic acid groups.[១៥៣][១៥៤] Other fluoropolymers retain some hydrogen atoms; polyvinylidene fluoride has half the fluorine atoms of PTFE and polyvinyl fluoride has a quarter, but both behave much like perfluorinated polymers.[១៥៥]

Production[កែប្រែ]

Industrial[កែប្រែ]

A machine room
Industrial fluorine cells at Preston

Moissan's method is used to produce industrial quantities of fluorine, via the electrolysis of a potassium fluoride/hydrogen fluoride mixture: hydrogen and fluoride ions are reduced and oxidized at a steel container cathode and a carbon block anode, under 8–12 volts, to generate hydrogen and fluorine gas respectively.[៥២][១៥៦] Temperatures are elevated, KF•2HF melting at ទំព័រគំរូ:Convert/Celsius and being electrolyzed at ទំព័រគំរូ:Convert/Celsius. KF, which acts as catalyst, is essential since pure HF cannot be electrolyzed.[៦៨][១៥៧][១៥៨] Fluorine can be stored in steel cylinders that have passivated interiors, at temperatures below ទំព័រគំរូ:Convert/Celsius; otherwise nickel can be used.[៦៨][១៥៩] Regulator valves and pipework are made of nickel, the latter possibly using Monel instead.[១៦០] Frequent passivation, along with the strict exclusion of water and greases, must be undertaken. In the laboratory, glassware may carry fluorine gas under low pressure and anhydrous conditions;[១៦០] some sources instead recommend nickel-Monel-PTFE systems.[១៦១]

Chemical[កែប្រែ]

While preparing for a 1986 conference to celebrate the centennial of Moissan's achievement, Karl O. Christe reasoned that chemical fluorine generation should be feasible since some metal fluoride anions have no stable neutral counterparts; their acidification potentially triggers oxidation instead. He devised a method which evolves fluorine at high yield and atmospheric pressure:[១៦២]

2 KMnO4 + 2 KF + 10 HF + 3 H2O2 → 2 K2MnF6 + 8 H2O + 3 O2
2 K2MnF6 + 4 SbF5 → 4 KSbF6 + 2 MnF3 + F2

Christe later commented that the reactants "had been known for more than 100 years and even Moissan could have come up with this scheme."[១៦៣] As late as 2008, some references still asserted that fluorine was too reactive for any chemical isolation.[១៦៤]

Industrial applications[កែប្រែ]

Fluorite mining, which supplies most global fluorine, peaked in 1989 when 5.6 million metric tons of ore were extracted. Chlorofluorocarbon restrictions lowered this to 3.6 million tons in 1994; production has since been increasing. Around 4.5 million tons of ore and revenue of US$550 million were generated in 2003; later reports estimated 2011 global fluorochemical sales at $15 billion and predicted 2016–18 production figures of 3.5 to 5.9 million tons, and revenue of at least $20 billion.[៦៨][១៦៥][១៦៦][១៦៧][១៦៨] Froth flotation separates mined fluorite into two main metallurgical grades of equal proportion: 60–85% pure metspar is almost all used in iron smelting whereas 97%+ pure acidspar is mainly converted to the key industrial intermediate hydrogen fluoride.[៥២][៦៨][១៦៩]

Fluorite Fluorapatite Hydrogen fluoride Metal smelting Glass production Fluorocarbons Sodium hexafluoroaluminate Pickling (metal) Fluorosilicic acid Alkane cracking Hydrofluorocarbon Hydrochlorofluorocarbons Chlorofluorocarbon Teflon Water fluoridation Uranium enrichment Sulfur hexafluoride Tungsten hexafluoride Phosphogypsum
Clickable diagram of the fluorochemical industry according to mass flows
Minaret-like electrical devices with wires around them, thicker at the bottom
SF6 transformers at a Russian railway

At least 17,000 metric tons of fluorine are produced each year. It costs only $5–8 per kilogram as uranium or sulfur hexafluoride, but many times more as an element because of handling challenges. Most processes using free fluorine in large amounts employ in situ generation under vertical integration.[១៧០]

The largest application of fluorine gas, consuming up to 7,000 metric tons annually, is in the preparation of UF6 for the nuclear fuel cycle. Fluorine is used to fluorinate uranium tetrafluoride, itself formed from uranium dioxide and hydrofluoric acid.[១៧០] Fluorine is monoisotopic, so any mass differences between UF6 molecules are due to the presence of 235U or 238U, enabling uranium enrichment via gaseous diffusion or gas centrifuge.[៩][៥២] About 6,000 metric tons per year go into producing the inert dielectric SF6 for high-voltage transformers and circuit breakers, eliminating the need for hazardous polychlorinated biphenyls associated with oil-filled devices.[១៧១] Several fluorine compounds are used in electronics: rhenium and tungsten hexafluoride in chemical vapor deposition, tetrafluoromethane in plasma etching[១៧២][១៧៣][១៧៤] and nitrogen trifluoride in cleaning equipment.[៥២] Fluorine is also used in the synthesis of organic fluorides, but its reactivity often necessitates conversion first to the gentler ClF3, BrF3, or IF5, which together allow calibrated fluorination. Fluorinated pharmaceuticals use sulfur tetrafluoride instead.[៥២]

Inorganic fluorides[កែប្រែ]

Aluminium extraction depends critically on cryolite

As with other iron alloys, around 3 kg (6.5 lb) metspar is added to each metric ton of steel; the fluoride ions lower its melting point and viscosity.[៥២][១៧៥] Alongside its role as an additive in materials like enamels and welding rod coats, most acidspar is reacted with sulfuric acid to form hydrofluoric acid, which is used in steel pickling, glass etching and alkane cracking.[៥២] One-third of HF goes into synthesizing cryolite and aluminium trifluoride, both fluxes in the Hall–Héroult process for aluminium extraction; replenishment is necessitated by their occasional reactions with the smelting apparatus. Each metric ton of aluminium requires about 23 kg (51 lb) of flux.[៥២][១៧៦] Fluorosilicates consume the second largest portion, with sodium fluorosilicate used in water fluoridation and laundry effluent treatment, and as an intermediate en route to cryolite and silicon tetrafluoride.[១៧៧] Other important inorganic fluorides include those of cobalt, nickel, and ammonium.[៥២][៩០][១៧៨]

Organic fluorides[កែប្រែ]

Organofluorides consume over 20% of mined fluorite and over 40% of hydrofluoric acid, with refrigerant gases dominating and fluoropolymers increasing their market share.[៥២][១៧៩] Surfactants are a minor application but generate over $1 billion in annual revenue.[១៨០] Due to the danger from direct hydrocarbon–fluorine reactions above −150 °C (−240 °F), industrial fluorocarbon production is indirect, mostly through halogen exchange reactions such as Swarts fluorination, in which chlorocarbon chlorines are substituted for fluorines by hydrogen fluoride under catalysts. Electrochemical fluorination subjects hydrocarbons to electrolysis in hydrogen fluoride, and the Fowler process treats them with solid fluorine carriers like cobalt trifluoride.[៧៩][១៨១]

Refrigerant gases[កែប្រែ]

Halogenated refrigerants, termed Freons in informal contexts,[note ១៨] are identified by R-numbers that denote the amount of fluorine, chlorine, carbon, and hydrogen present.[៥២][១៨២] Chlorofluorocarbons (CFCs) like R-11, R-12, and R-114 once dominated organofluorines, peaking in production in the 1980s. Used for air conditioning systems, propellants and solvents, their production was below one-tenth of this peak by the early 2000s, after widespread international prohibition.[៥២] Hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs) were designed as replacements; their synthesis consumes more than 90% of the fluorine in the organic industry. Important HCFCs include R-22, chlorodifluoromethane, and R-141b. The main HFC is R-134a[៥២] with a new type of molecule HFO-1234yf, a Hydrofluoroolefin (HFO) coming to prominence owing to its global warming potential of less than 1% that of HFC-134a.[១៨៣]

Polymers[កែប្រែ]

Shiny spherical drop of water on blue cloth
Fluorosurfactant-treated fabrics are often hydrophobic

About 180,000 metric tons of fluoropolymers were produced in 2006 and 2007, generating over $3.5 billion revenue per year.[១៨៤] The global market was estimated at just under $6 billion in 2011 and was predicted to grow by 6.5% per year up to 2016.[១៨៥] Fluoropolymers can only be formed by polymerizing free radicals.[១៥១]

Polytetrafluoroethylene (PTFE), sometimes called by its DuPont name Teflon,[១៨៦] represents 60–80% by mass of the world's fluoropolymer production.[១៨៤] The largest application is in electrical insulation since PTFE is an excellent dielectric. It is also used in the chemical industry where corrosion resistance is needed, in coating pipes, tubing, and gaskets. Another major use is in PFTE-coated fiberglass cloth for stadium roofs. The major consumer application is for non-stick cookware.[១៨៦] Jerked PTFE film becomes expanded PTFE (ePTFE), a fine-pored membrane sometimes referred to by the brand name Gore-Tex and used for rainwear, protective apparel, and filters; ePTFE fibers may be made into seals and dust filters.[១៨៦] Other fluoropolymers, including fluorinated ethylene propylene, mimic PTFE's properties and can substitute for it; they are more moldable, but also more costly and have lower thermal stability. Films from two different fluoropolymers replace glass in solar cells.[១៨៦][១៨៧]

The chemically resistant (but expensive) fluorinated ionomers are used as electrochemical cell membranes, of which the first and most prominent example is Nafion. Developed in the 1960s, it was initially deployed as fuel cell material in spacecraft and then replaced mercury-based chloralkali process cells. Recently, the fuel cell application has reemerged with efforts to install proton exchange membrane fuel cells into automobiles.[១៨៨][១៨៩][១៩០] Fluoroelastomers such as Viton are crosslinked fluoropolymer mixtures mainly used in O-rings;[១៨៦] perfluorobutane (C4F10) is used as a fire-extinguishing agent.[១៩១]

Surfactants[កែប្រែ]

Fluorosurfactants are small organofluorine molecules used for repelling water and stains. Although expensive (comparable to pharmaceuticals at $200–2000 per kilogram), they yielded over $1 billion in annual revenues by 2006; Scotchgard alone generated over $300 million in 2000.[១៨០][១៩២][១៩៣] Fluorosurfactants are a minority in the overall surfactant market, most of which is taken up by much cheaper hydrocarbon-based products. Applications in paints are burdened by compounding costs; this use was valued at only $100 million in 2006.[១៨០]

Agrichemicals[កែប្រែ]

About 30% of agrichemicals contain fluorine,[១៩៤] most of them herbicides and fungicides with a few crop regulators. Fluorine substitution, usually of a single atom or at most a trifluoromethyl group, is a robust modification with effects analogous to fluorinated pharmaceuticals: increased biological stay time, membrane crossing, and altering of molecular recognition.[១៩៥] Trifluralin is a prominent example, with large-scale use in the U.S. as a weedkiller,[១៩៥][១៩៦] but it is a suspected carcinogen and has been banned in many European countries.[១៩៧] Sodium monofluoroacetate (1080) is a mammalian poison in which two acetic acid hydrogens are replaced with fluorine and sodium; it disrupts cell metabolism by replacing acetate in the citric acid cycle. First synthesized in the late 19th century, it was recognized as an insecticide in the early 20th, and was later deployed in its current use. New Zealand, the largest consumer of 1080, uses it to protect kiwis from the invasive Australian common brushtail possum.[១៩៨] Europe and the U.S. have banned 1080.[១៩៩][២០០][note ១៩]

Medicinal applications[កែប្រែ]

Dental care[កែប្រែ]

Man holding plastic tray with brown material in it and sticking a small stick into a boy's open mouth
Topical fluoride treatment in Panama

Population studies from the mid-20th century onwards show topical fluoride reduces dental caries. This was first attributed to the conversion of tooth enamel hydroxyapatite into the more durable fluorapatite, but studies on pre-fluoridated teeth refuted this hypothesis, and current theories involve fluoride aiding enamel growth in small caries.[២០១] After studies of children in areas where fluoride was naturally present in drinking water, controlled public water supply fluoridation to fight tooth decay[២០២] began in the 1940s and is now applied to water supplying 6 percent of the global population, including two-thirds of Americans.[២០៣][២០៤] Reviews of the scholarly literature in 2000 and 2007 associated water fluoridation with a significant reduction of tooth decay in children.[២០៥] Despite such endorsements and evidence of no adverse effects other than mostly benign dental fluorosis,[២០៦] opposition still exists on ethical and safety grounds.[២០៤][២០៧] The benefits of fluoridation have lessened, possibly due to other fluoride sources, but are still measurable in low-income groups.[២០៨] Sodium monofluorophosphate and sometimes sodium or tin(II) fluoride are often found in fluoride toothpastes, first introduced in the U.S. in 1955 and now ubiquitous in developed countries, alongside fluoridated mouthwashes, gels, foams, and varnishes.[២០៨][២០៩]

Pharmaceuticals[កែប្រែ]

Capsules with "Prozac" and "DISTA" visible
Fluoxetine capsules

Twenty percent of modern pharmaceuticals contain fluorine.[២១០] One of these, the cholesterol-reducer atorvastatin (Lipitor), made more revenue than any other drug until it became generic in 2011.[២១១] The combination asthma prescription Seretide, a top-ten revenue drug in the mid-2000s, contains two active ingredients, one of which – fluticasone – is fluorinated.[២១២] Many drugs are fluorinated to delay inactivation and lengthen dosage periods because the carbon–fluorine bond is very stable.[២១៣] Fluorination also increases lipophilicity because the bond is more hydrophobic than the carbon–hydrogen bond, and this often helps in cell membrane penetration and hence bioavailability.[២១២]

Tricyclics and other pre-1980s antidepressants had several side effects due to their non-selective interference with neurotransmitters other than the serotonin target; the fluorinated fluoxetine was selective and one of the first to avoid this problem. Many current antidepressants receive this same treatment, including the selective serotonin reuptake inhibitors: citalopram, its isomer escitalopram, and fluvoxamine and paroxetine.[២១៤][២១៥] Quinolones are artificial broad-spectrum antibiotics that are often fluorinated to enhance their effects. These include ciprofloxacin and levofloxacin.[២១៦][២១៧][២១៨][២១៩] Fluorine also finds use in steroids:[២២០] fludrocortisone is a blood pressure-raising mineralocorticoid, and triamcinolone and dexamethasone are strong glucocorticoids.[២២១] The majority of inhaled anesthetics are heavily fluorinated; the prototype halothane is much more inert and potent than its contemporaries. Later compounds such as the fluorinated ethers sevoflurane and desflurane are better than halothane and are almost insoluble in blood, allowing faster waking times.[២២២][២២៣]

PET scanning[កែប្រែ]

Rotating transparent image of a human figure with targeted organs highlighted
A full-body 18F PET scan

Fluorine-18 is often found in radioactive tracers for positron emission tomography, as its half-life of almost two hours is long enough to allow for its transport from production facilities to imaging centers.[២២៤] The most common tracer is fluorodeoxyglucose[២២៤] which, after intravenous injection, is taken up by glucose-requiring tissues such as the brain and most malignant tumors;[២២៥] computer-assisted tomography can then be used for detailed imaging.[២២៦]

Oxygen carriers[កែប្រែ]

Liquid fluorocarbons can hold large volumes of oxygen or carbon dioxide, more so than blood, and have attracted attention for their possible uses in artificial blood and in liquid breathing.[២២៧] Because fluorocarbons do not normally mix with water, they must be mixed into emulsions (small droplets of perfluorocarbon suspended in water) to be used as blood.[២២៨][២២៩] One such product, Oxycyte, has been through initial clinical trials.[២៣០] These substances can aid endurance athletes and are banned from sports; one cyclist's near death in 1998 prompted an investigation into their abuse.[២៣១][២៣២] Applications of pure perfluorocarbon liquid breathing (which uses pure perfluorocarbon liquid, not a water emulsion) include assisting burn victims and premature babies with deficient lungs. Partial and complete lung filling have been considered, though only the former has had any significant tests in humans.[២៣៣] An Alliance Pharmaceuticals effort reached clinical trials but was abandoned because the results were not better than normal therapies.[២៣៤]

Biological role[កែប្រែ]

The gifblaar is one of the few organofluorine-synthesizing organisms

Fluorine is not essential for humans or other mammals; small amounts may be beneficial for bone strength, but this has not been definitively established. As there are many environmental sources of trace fluorine, the possibility of a fluorine deficiency could apply only to artificial diets.[២៣៥][២៣៦] Natural organofluorines have been found in microorganisms and plants[៥៥] but not animals.[២៣៧] The most common is fluoroacetate, which is used as a defense against herbivores by at least 40 plants in Africa, Australia and Brazil.[១៩៩] Other examples include terminally fluorinated fatty acids, fluoroacetone, and 2-fluorocitrate.[២៣៧] An enzyme that binds fluorine to carbon – adenosyl-fluoride synthase – was discovered in bacteria in 2002.[២៣៨]

Toxicity[កែប្រែ]

A diagonal placard with warning poison
A diagonal placard with warning corrosive
A diagonal placard with warning inhalant
A diagonal placard with warning oxidant
U.S. hazard signs for commercially transported fluorine[២៣៩]

Elemental fluorine is highly toxic to living organisms. Its effects in humans start at concentrations lower than hydrogen cyanide's 50 ppm[២៤០] and are similar to those of chlorine:[២៤១] significant irritation of the eyes and respiratory system as well as liver and kidney damage occur above 25 ppm, which is the immediately dangerous to life and health value for fluorine.[២៤២] Eyes and noses are seriously damaged at 100 ppm,[២៤២] and inhalation of 1,000 ppm fluorine will cause death in minutes,[២៤៣] compared to 270 ppm for hydrogen cyanide.[២៤៤]

Hydrofluoric acid[កែប្រែ]

left and right hands, two views, burned index fingers
Hydrofluoric acid burns may not be evident for a day, after which calcium treatments are less effective.[២៤៥]

Hydrofluoric acid is a contact poison with greater hazards than many strong acids like sulfuric acid even though it is weak: it remains neutral in aqueous solution and thus penetrates tissue faster, whether through inhalation, ingestion or the skin, and at least nine U.S. workers died in such accidents from 1984 to 1994. It reacts with calcium and magnesium in the blood leading to hypocalcemia and possible death through cardiac arrhythmia.[២៤៦] Insoluble calcium fluoride formation triggers strong pain[២៤៧] and burns larger than 160 cm2 (25 in2) can cause serious systemic toxicity.[២៤៨]

Exposure may not be evident for eight hours for 50% HF, rising to 24 hours for lower concentrations, and a burn may initially be painless as hydrogen fluoride affects nerve function. If skin has been exposed to HF, damage can be reduced by rinsing it under a jet of water for 10–15 minutes and removing contaminated clothing.[២៤៩] Calcium gluconate is often applied next, providing calcium ions to bind with fluoride; skin burns can be treated with 2.5% calcium gluconate gel or special rinsing solutions.[២៥០][២៥១][២៥២] Hydrofluoric acid absorption requires further medical treatment; calcium gluconate may be injected or administered intravenously. Using calcium chloride – a common laboratory reagent – in lieu of calcium gluconate is contraindicated, and may lead to severe complications. Excision or amputation of affected parts may be required.[២៤៨][២៥៣]

Fluoride ion[កែប្រែ]

Soluble fluorides are moderately toxic: 5–10 g sodium fluoride, or 32–64 mg fluoride ions per kilogram of body mass, represents a lethal dose for adults.[២៥៤] One-fifth of the lethal dose can cause adverse health effects,[២៥៥] and chronic excess consumption may lead to skeletal fluorosis, which affects millions in Asia and Africa.[២៥៥][២៥៦] Ingested fluoride forms hydrofluoric acid in the stomach which is easily absorbed by the intestines, where it crosses cell membranes, binds with calcium and interferes with various enzymes, before urinary excretion. Exposure limits are determined by urine testing of the body's ability to clear fluoride ions.[២៥៥][២៥៧]

Historically, most cases of fluoride poisoning have been caused by accidental ingestion of insecticides containing inorganic fluorides.[២៥៨] Most current calls to poison control centers for possible fluoride poisoning come from the ingestion of fluoride-containing toothpaste.[២៥៥] Malfunctioning water fluoridation equipment is another cause: one incident in Alaska affected almost 300 people and killed one person.[២៥៩] Dangers from toothpaste are aggravated for small children, and the Centers for Disease Control and Prevention recommends supervising children below six brushing their teeth so that they do not swallow toothpaste.[២៦០] One regional study examined a year of pre-teen fluoride poisoning reports totaling 87 cases, including one death from ingesting insecticide. Most had no symptoms, but about 30% had stomach pains.[២៥៨] A larger study across the U.S. had similar findings: 80% of cases involved children under six, and there were few serious cases.[២៦១]

Environmental concerns[កែប្រែ]

Atmosphere[កែប្រែ]

Animation showing colored representation of ozone distribution by year above North America in 6 steps. It starts with a lot of ozone but by 2060 is all gone.
NASA projection of stratospheric ozone over North America without the Montreal Protocol[២៦២]

The Montreal Protocol, signed in 1987, set strict regulations on chlorofluorocarbons (CFCs) and bromofluorocarbons due to their ozone damaging potential (ODP). The high stability which suited them to their original applications also meant that they were not decomposing until they reached higher altitudes, where liberated chlorine and bromine atoms attacked ozone molecules.[២៦៣] Even with the ban, and early indications of its efficacy, predictions warned that several generations would pass before full recovery.[២៦៤][២៦៥] With one-tenth the ODP of CFCs, hydrochlorofluorocarbons (HCFCs) are the current replacements,[២៦៦] and are themselves scheduled for substitution by 2030–2040 by hydrofluorocarbons (HFCs) with no chlorine and zero ODP.[២៦៧] In 2007 this date was brought forward to 2020 for developed countries;[២៦៨] the Environmental Protection Agency had already prohibited one HCFC's production and capped those of two others in 2003.[២៦៧] Fluorocarbon gases are generally greenhouse gases with global-warming potentials (GWPs) of about 100 to 10,000; sulfur hexafluoride has a value of around 20,000.[២៦៩] An outlier is HFO-1234yf which is a new type of refrigerant called a Hydrofluoroolefin (HFO) and has attracted global demand due to its GWP of 4 compared to 1,430 for the current refrigerant standard HFC-134a.[១៨៣]

Biopersistence[កែប្រែ]

Organofluorines exhibit biopersistence due to the strength of the carbon–fluorine bond. Perfluoroalkyl acids (PFAAs), which are sparingly water-soluble owing to their acidic functional groups, are noted persistent organic pollutants;[២៧១] perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) are most often researched.[២៧២][២៧៣][២៧៤] PFAAs have been found in trace quantities worldwide from polar bears to humans, with PFOS and PFOA known to reside in breast milk and the blood of newborn babies. A 2013 review showed a slight correlation between groundwater and soil PFAA levels and human activity; there was no clear pattern of one chemical dominating, and higher amounts of PFOS were correlated to higher amounts of PFOA.[២៧២][២៧៣][២៧៥] In the body, PFAAs bind to proteins such as serum albumin; they tend to concentrate within humans in the liver and blood before excretion through the kidneys. Dwell time in the body varies greatly by species, with half-lives of days in rodents, and years in humans.[២៧២][២៧៣][២៧៦] High doses of PFOS and PFOA cause cancer and death in newborn rodents but human studies have not established an effect at current exposure levels.[២៧២][២៧៣][២៧៦]

See also[កែប្រែ]

Notes[កែប្រែ]

  1. Sources disagree on the radii of oxygen, fluorine, and neon atoms. Precise comparison is thus impossible.
  2. α-Fluorine has a regular pattern of molecules and is a crystalline solid, but its molecules do not have a specific orientation. β-Fluorine's molecules have fixed locations and minimal rotational uncertainty. For further detail on α-fluorine, see the 1970 structure by Pauling.[៣២] For further detail on the concept of disorder in crystals, see the referenced general reviews.[៣៣][៣៤]
  3. A loud click is heard. Samples may shatter and sample windows blow out.
  4. The ratio of the angular momentum to magnetic moment is called the gyromagnetic ratio. "Certain nuclei can for many purposes be thought of as spinning round an axis like the Earth or like a top. In general the spin endows them with angular momentum and with a magnetic moment; the first because of their mass, the second because all or part of their electric charge may be rotating with the mass."[៣៨]
  5. Basilius Valentinus supposedly described fluorite in the late 15th century, but because his writings were uncovered 200 years later, this work's veracity is doubtful.[៦០][៦១][៦២]
  6. Or perhaps from as early as 1670 onwards; Partington[៦៦] and Weeks[៦៥] give differing accounts.
  7. Fl, since 2012, is used for flerovium.
  8. Davy, Gay-Lussac, Thénard, and the Irish chemists Thomas and George Knox were injured. Belgian chemist Paulin Louyet and French chemist Jérôme Nicklès died. Moissan also experienced serious hydrogen fluoride poisoning.[៦៥][៧៤]
  9. Also honored was his invention of the electric arc furnace.
  10. Fluorine in F2 is defined to have oxidation state 0. The unstable species F
    2
    and F
    3
    , which decompose at around 40 K, have intermediate oxidation states;[៨៥] F+
    4
    and a few related species are predicted to be stable.[៨៦]
  11. The metastable boron and nitrogen monofluoride have higher-order fluorine bonds, and some metal complexes use it as a bridging ligand. Hydrogen bonding is another possibility.
  12. ZrF4 melts at 932 °C (1710 °F),[៩៩] HfF4 sublimes at 968 °C (1774 °F),[៩៦] and UF4 melts at 1036 °C (1897 °F).[១០០]
  13. These thirteen are those of molybdenum, technetium, ruthenium, rhodium, tungsten, rhenium, osmium, iridium, platinum, polonium, uranium, neptunium, and plutonium.
  14. See also the explanation by Clark.[១១៨]
  15. Carbon tetrafluoride is formally organic, but is included here rather than in the organofluorine chemistry section – where more complex carbon-fluorine compounds are discussed – for comparison with SiF4 and GeF4.
  16. Perfluorocarbon and fluorocarbon are IUPAC synonyms for molecules containing carbon and fluorine only, but in colloquial and commercial contexts the latter term may refer to any carbon- and fluorine-containing molecule, possibly with other elements.
  17. This terminology is imprecise, and perfluorinated substance is also used.[១៤៨]
  18. This DuPont trademark is sometimes further misused for CFCs, HFCs, or HCFCs.
  19. American sheep and cattle collars may use 1080 against predators like coyotes.

Sources[កែប្រែ]

Citations[កែប្រែ]

  1. ១,០ ១,១ Jaccaud et al. 2000, p. 381.
  2. Dean 1999, p. 564.
  3. Lide 2004, pp. 10.137–10.138.
  4. Moore, Stanitski & Jurs 2010, ទ. 156.
  5. Cordero et al. 2008.
  6. Pyykkö & Atsumi 2009.
  7. ៧,០ ៧,១ Greenwood & Earnshaw 1998, p. 804.
  8. Macomber 1996, ទ. 230
  9. ៩,០ ៩,១ ៩,២ Jaccaud et al. 2000, p. 382.
  10. Nelson 1947.
  11. Lidin, Molochko & Andreeva 2000, pp. 442–455.
  12. ១២,០ ១២,១ Wiberg, Wiberg & Holleman 2001, p. 404.
  13. Patnaik 2007, p. 472.
  14. Aigueperse et al. 2000, p. 400.
  15. Greenwood & Earnshaw 1998, pp. 76, 804.
  16. Kuriakose & Margrave 1965.
  17. Hasegawa et al. 2007.
  18. Lagow 1970, ទទ. 64–78.
  19. Navarrini et al. 2012.
  20. Lidin, Molochko & Andreeva 2000, p. 252.
  21. Tanner Industries 2011.
  22. Morrow, Perry & Cohen 1959.
  23. Emeléus & Sharpe 1974, ទ. 111.
  24. Wiberg, Wiberg & Holleman 2001, p. 457.
  25. Brantley 1949, ទ. 26.
  26. Jaccaud et al. 2000, p. 383.
  27. Pitzer 1975.
  28. ២៨,០ ២៨,១ Khriachtchev et al. 2000.
  29. Burdon, Emson & Edwards 1987.
  30. Lide 2004, p. 4.12.
  31. ៣១,០ ៣១,១ Dean 1999, p. 523.
  32. Pauling, Keaveny & Robinson 1970.
  33. Bürgi 2000.
  34. Müller 2009.
  35. ៣៥,០ ៣៥,១ Young 1975, p. 10.
  36. ៣៦,០ ៣៦,១ Barrett, Meyer & Wasserman 1967.
  37. National Nuclear Data Center NuDat 2.1, Fluorine-19.
  38. Vigoureux 1961.
  39. Meusinger, Chippendale & Fairhurst 2012, ទទ. 752, 754.
  40. ៤០,០ ៤០,១ National Nuclear Data Center NuDat 2.1.
  41. NUBASE 2016, ទ. 030001-23—030001-27.
  42. NUBASE 2016, ទ. 030001-24.
  43. Cameron 1973.
  44. ៤៤,០ ៤៤,១ ៤៤,២ Croswell 2003.
  45. Clayton 2003, ទទ. 101–104.
  46. Renda et al. 2004.
  47. ៤៧,០ ៤៧,១ Jaccaud et al. 2000, p. 384.
  48. Schulze-Makuch & Irwin 2008, ទ. 121.
  49. Haxel, Hedrick & Orris 2005.
  50. ៥០,០ ៥០,១ ៥០,២ ៥០,៣ ៥០,៤ Greenwood & Earnshaw 1998, p. 795.
  51. ៥១,០ ៥១,១ Norwood & Fohs 1907, ទ. 52.
  52. ៥២,០០ ៥២,០១ ៥២,០២ ៥២,០៣ ៥២,០៤ ៥២,០៥ ៥២,០៦ ៥២,០៧ ៥២,០៨ ៥២,០៩ ៥២,១០ ៥២,១១ ៥២,១២ ៥២,១៣ Villalba, Ayres & Schroder 2008.
  53. Kelly & Miller 2005.
  54. Lusty et al. 2008.
  55. ៥៥,០ ៥៥,១ Gribble 2002.
  56. Richter, Hahn & Fuchs 2001, ទ. 3.
  57. ៥៧,០ ៥៧,១ Schmedt, Mangstl & Kraus 2012.
  58. Greenwood & Earnshaw 1998, p. 790.
  59. Senning 2007, ទ. 149.
  60. Stillman 1912.
  61. Principe 2012, ទទ. 140, 145.
  62. Agricola, Hoover & Hoover 1912, footnotes and commentary, pp. xxx, 38, 409, 430, 461, 608.
  63. Greenwood & Earnshaw 1998, p. 109.
  64. Agricola, Hoover & Hoover 1912, preface, pp. 380–381.
  65. ៦៥,០ ៦៥,១ ៦៥,២ ៦៥,៣ ៦៥,៤ Weeks 1932.
  66. Partington 1923.
  67. Marggraf 1770.
  68. ៦៨,០ ៦៨,១ ៦៨,២ ៦៨,៣ ៦៨,៤ ៦៨,៥ ៦៨,៦ ៦៨,៧ Kirsch 2004, ទទ. 3–10.
  69. Scheele 1771.
  70. Ampère 1816.
  71. Davy 1813, p. 278.
  72. Banks 1986, p. 11.
  73. ៧៣,០ ៧៣,១ Storer 1864, ទទ. 278–280.
  74. ៧៤,០ ៧៤,១ ៧៤,២ ៧៤,៣ ៧៤,៤ Toon 2011.
  75. ៧៥,០ ៧៥,១ Asimov 1966, ទ. 162.
  76. Greenwood & Earnshaw 1998, pp. 789–791.
  77. Moissan 1886.
  78. Viel & Goldwhite 1993, ទ. 35.
  79. ៧៩,០ ៧៩,១ ៧៩,២ ៧៩,៣ Okazoe 2009.
  80. ៨០,០ ៨០,១ Hounshell & Smith 1988, pp. 156–157.
  81. DuPont 2013a.
  82. Meyer 1977, ទ. 111.
  83. Kirsch 2004, ទទ. 60–66.
  84. Riedel & Kaupp 2009.
  85. Wiberg, Wiberg & Holleman 2001, p. 422.
  86. Schlöder & Riedel 2012.
  87. Harbison 2002.
  88. Edwards 1994, ទ. 515.
  89. Katakuse et al. 1999, ទ. 267.
  90. ៩០,០ ៩០,១ Aigueperse et al. 2000, pp. 420–422.
  91. Walsh 2009, ទទ. 99–102, 118–119.
  92. Emeléus & Sharpe 1983, pp. 89–97.
  93. Babel & Tressaud 1985, ទទ. 91–96.
  94. Einstein et al. 1967.
  95. Brown et al. 2005, ទ. 144.
  96. ៩៦,០ ៩៦,១ Perry 2011, ទ. 193.
  97. Kern et al. 1994.
  98. Lide 2004, pp. 4.60, 4.76, 4.92, 4.96.
  99. Lide 2004, p. 4.96.
  100. Lide 2004, p. 4.92.
  101. Greenwood & Earnshaw 1998, p. 964.
  102. Becker & Müller 1990.
  103. Greenwood & Earnshaw 1998, p. 990.
  104. Lide 2004, pp. 4.72, 4.91, 4.93.
  105. ១០៥,០ ១០៥,១ Greenwood & Earnshaw 1998, pp. 561–563.
  106. Emeléus & Sharpe 1983, pp. 256–277.
  107. Mackay, Mackay & Henderson 2002, pp. 355–356.
  108. Greenwood & Earnshaw 1998, (various pages, by metal in respective chapters).
  109. Lide 2004, pp. 4.71, 4.78, 4.92.
  110. Drews et al. 2006.
  111. Greenwood & Earnshaw 1998, p. 819.
  112. Bartlett 1962.
  113. Pauling 1960, ទទ. 454–464.
  114. Atkins & Jones 2007, ទទ. 184–185.
  115. Emsley 1981.
  116. Greenwood & Earnshaw 1998, pp. 812–816.
  117. Wiberg, Wiberg & Holleman 2001, p. 425.
  118. Clark 2002.
  119. Chambers & Holliday 1975, ទទ. 328–329.
  120. Air Products and Chemicals 2004, p. 1.
  121. Noury, Silvi & Gillespie 2002.
  122. Chang & Goldsby 2013, ទ. 706.
  123. Ellis 2001, ទ. 69.
  124. Aigueperse et al. 2000, p. 423.
  125. Wiberg, Wiberg & Holleman 2001, p. 897.
  126. Raghavan 1998, ទទ. 164–165.
  127. Godfrey et al. 1998, ទ. 98.
  128. Aigueperse et al. 2000, p. 432.
  129. Murthy, Mehdi Ali & Ashok 1995, ទទ. 180–182, 206–208.
  130. Greenwood & Earnshaw 1998, pp. 638–640, 683–689, 767–778.
  131. Wiberg, Wiberg & Holleman 2001, pp. 435–436.
  132. Greenwood & Earnshaw 1998, pp. 828–830.
  133. Patnaik 2007, ទទ. 478–479.
  134. Moeller, Bailar & Kleinberg 1980, p. 236.
  135. Wiberg, Wiberg & Holleman 2001, pp. 392–393.
  136. Wiberg, Wiberg & Holleman 2001, p. 395–397, 400.
  137. Lewars 2008, p. 68.
  138. Pitzer 1993, ទ. 111.
  139. Lewars 2008, p. 67.
  140. ១៤០,០ ១៤០,១ Bihary, Chaban & Gerber 2002.
  141. Lewars 2008, p. 71.
  142. Hoogers 2004, pp. 4–12.
  143. O'Hagan 2008.
  144. Siegemund et al. 2005, p. 444.
  145. Sandford 2000, ទ. 455.
  146. Siegemund et al. 2005, pp. 451–452.
  147. Barbee, McCormack & Vartanian 2000, ទ. 116.
  148. Posner et al. 2013, ទទ. 187–190.
  149. ១៤៩,០ ១៤៩,១ Posner 2011, ទ. 27.
  150. Salager 2002, ទ. 45.
  151. ១៥១,០ ១៥១,១ Carlson & Scmiegel 2005, p. 3.
  152. ១៥២,០ ១៥២,១ Carlson & Scmiegel 2005, pp. 3–4.
  153. Rhoades 2008, ទ. 2.
  154. Okada et al. 1998.
  155. Carlson & Scmiegel 2005, p. 4.
  156. Jaccaud et al. 2000, p. 386.
  157. Jaccaud et al. 2000, pp. 384–285.
  158. Greenwood & Earnshaw 1998, pp. 796–797.
  159. Jaccaud et al. 2000, pp. 384–385.
  160. ១៦០,០ ១៦០,១ Jaccaud et al. 2000, pp. 390–391.
  161. Shriver & Atkins 2010, ទ. 427.
  162. Christe 1986.
  163. Christe Research Group n.d.
  164. Carey 2008, ទ. 173.
  165. Miller 2003b.
  166. PRWeb 2012.
  167. Bombourg 2012.
  168. TMR 2013.
  169. Fulton & Miller 2006, ទ. 471.
  170. ១៧០,០ ១៧០,១ Jaccaud et al. 2000, p. 392.
  171. Aigueperse et al. 2000, p. 430.
  172. Jaccaud et al. 2000, pp. 391–392.
  173. El-Kareh 1994, ទ. 317.
  174. Arana et al. 2007.
  175. Miller 2003a.
  176. Energetics, Inc. 1997, ទទ. 41, 50.
  177. Aigueperse et al. 2000, p. 428.
  178. Willey 2007, ទ. 113.
  179. PRWeb 2010.
  180. ១៨០,០ ១៨០,១ ១៨០,២ Renner 2006.
  181. Green et al. 1994, ទទ. 91–93.
  182. DuPont 2013b.
  183. ១៨៣,០ ១៨៣,១ Walter 2013.
  184. ១៨៤,០ ១៨៤,១ Buznik 2009.
  185. PRWeb 2013.
  186. ១៨៦,០ ១៨៦,១ ១៨៦,២ ១៨៦,៣ ១៨៦,៤ Martin 2007, ទទ. 187–194.
  187. DeBergalis 2004.
  188. Grot 2011, ទទ. 1–10.
  189. Ramkumar 2012, ទ. 567.
  190. Burney 1999, ទ. 111.
  191. Slye 2012, p. 10.
  192. Kissa 2001, ទទ. 516–551.
  193. Ullmann 2008, ទទ. 538, 543–547.
  194. ICIS 2006.
  195. ១៩៥,០ ១៩៥,១ Theodoridis 2006.
  196. EPA 1996.
  197. DG Environment 2007.
  198. Beasley 2002.
  199. ១៩៩,០ ១៩៩,១ Proudfoot, Bradberry & Vale 2006.
  200. Eisler 1995.
  201. Pizzo 2007.
  202. CDC 2001.
  203. Ripa 1993.
  204. ២០៤,០ ២០៤,១ Cheng, Chalmers & Sheldon 2007.
  205. NHMRC 2007; see Yeung 2008 for a summary.
  206. Marya 2011, ទ. 343.
  207. Armfield 2007.
  208. ២០៨,០ ២០៨,១ Baelum, Sheiham & Burt 2008, ទ. 518.
  209. Cracher 2012, ទ. 12.
  210. Emsley 2011, ទ. 178.
  211. Johnson 2011.
  212. ២១២,០ ២១២,១ Swinson 2005.
  213. Hagmann 2008.
  214. Mitchell 2004, ទទ. 37–39.
  215. Preskorn 1996, chap. 2.
  216. Werner et al. 2011.
  217. Brody 2012.
  218. Nelson et al. 2007.
  219. King, Malone & Lilley 2000.
  220. Parente 2001, ទ. 40.
  221. Raj & Erdine 2012, ទ. 58.
  222. Filler & Saha 2009.
  223. Bégué & Bonnet-Delpon 2008, ទទ. 335–336.
  224. ២២៤,០ ២២៤,១ Schmitz et al. 2000.
  225. Bustamante & Pedersen 1977.
  226. Alavi & Huang 2007, ទ. 41.
  227. Gabriel et al. 1996.
  228. Sarkar 2008.
  229. Schimmeyer 2002.
  230. Davis 2006.
  231. Gains 1998.
  232. Taber 1999.
  233. Shaffer, Wolfson & Clark 1992, ទ. 102.
  234. Kacmarek et al. 2006.
  235. Nielsen 2009.
  236. Olivares & Uauy 2004.
  237. ២៣៧,០ ២៣៧,១ Murphy, Schaffrath & O'Hagan 2003
  238. O'Hagan et al. 2002.
  239. National Oceanic and Atmospheric Administration.
  240. The National Institute for Occupational Safety and Health 1994a.
  241. The National Institute for Occupational Safety and Health 1994b.
  242. ២៤២,០ ២៤២,១ Keplinger & Suissa 1968.
  243. Emsley 2011, ទ. 179.
  244. Biller 2007, ទ. 939.
  245. Eaton 1997.
  246. Blodgett, Suruda & Crouch 2001.
  247. Hoffman et al. 2007, ទ. 1333.
  248. ២៤៨,០ ២៤៨,១ HSM 2006.
  249. Fischman 2001, ទទ. 458–459.
  250. El Saadi et al. 1989.
  251. Roblin et al. 2006.
  252. Hultén et al. 2004.
  253. Zorich 1991, ទទ. 182–183.
  254. Liteplo et al. 2002, ទ. 100.
  255. ២៥៥,០ ២៥៥,១ ២៥៥,២ ២៥៥,៣ Shin & Silverberg 2013.
  256. Reddy 2009.
  257. Baez, Baez & Marthaler 2000.
  258. ២៥៨,០ ២៥៨,១ Augenstein et al. 1991.
  259. Gessner et al. 1994.
  260. CDC 2013.
  261. Shulman & Wells 1997.
  262. Beck et al. 2011.
  263. Aucamp & Björn 2010, ទទ. 4–6, 41, 46–47.
  264. Crow 2011.
  265. Barry & Phillips 2006.
  266. EPA 2013a.
  267. ២៦៧,០ ២៦៧,១ EPA 2013b.
  268. McCoy 2007.
  269. Forster et al. 2007, pp. 212–213.
  270. Schwarcz 2004, p. 37.
  271. Giesy & Kannan 2002.
  272. ២៧២,០ ២៧២,១ ២៧២,២ ២៧២,៣ Steenland, Fletcher & Savitz 2010.
  273. ២៧៣,០ ២៧៣,១ ២៧៣,២ ២៧៣,៣ Betts 2007.
  274. EPA 2012.
  275. Zareitalabad et al. 2013.
  276. ២៧៦,០ ២៧៦,១ Lau et al. 2007.

Indexed references[កែប្រែ]

Agricola, Georgius; Hoover, Herbert Clark; Hoover, Lou Henry (1912)។ De Re Metallica។ London: The Mining Magazinehttps://archive.org/stream/georgiusagricola00agririch#page/n5/mode/2up 
Aigueperse, J.; Mollard, P.; Devilliers, D.; Chemla, M.; Faron, R.; Romano, R. E.; Cue, J. P. (2000)។ "Fluorine Compounds, Inorganic"។ ជា Ullmann, Franz។ Ullmann's Encyclopedia of Industrial Chemistry15។ Weinheim: Wiley-VCH។ ទំ. 397–441។ អ.វ.ល.:10.1002/14356007ល.ស.ប.អ. 3527306730 
Air Products and Chemicals (2004)។ "Safetygram #39 Chlorine Trifluoride"។ Air Products and Chemicals។ បានដាក់ទុកឯកសារ ពី[១] នៅថ្ងៃ 18 March 2006https://web.archive.org/web/20060318221608/http://www.airproducts.com/nr/rdonlyres/8479ed55-2170-4651-a3d4-223b2957a9f3/0/safetygram39.pdf។ បានយកមក 16 February 2014 
Alavi, Abbas; Huang, Steve S. (2007)។ "Positron Emission Tomography in Medicine: An Overview"។ ជា Hayat, M. A.។ Cancer Imaging, Volume 1: Lung and Breast Carcinomas។ Burlington: Academic Press។ ទំ. 39–44។ ល.ស.ប.អ. 978-0-12-370468-9 
Ampère, André-Marie (1816)។ "Suite d'une classification naturelle pour les corps simples" (ជាFrench)។ Annales de chimie et de physique 2: 1–5https://books.google.com/?id=4jEFAAAAQAAJ&pg=RA1-PA5 
Arana, L. R.; Mas, N.; Schmidt, R.; Franz, A. J.; Schmidt, M. A.; Jensen, K. F. (2007)។ "Isotropic Etching of Silicon in Fluorine Gas for MEMS Micromachining"។ Journal of Micromechanics and Microengineering 17 (2): 384។ Bibcode 2007JMiMi..17..384Aអ.វ.ល.:10.1088/0960-1317/17/2/026 
Armfield, J. M. (2007)។ "When Public Action Undermines Public Health: A Critical Examination of Antifluoridationist Literature"Australia and New Zealand Health Policy 4: 25។ អ.វ.ល.:10.1186/1743-8462-4-25PMC 2222595អ.ស.ផ.ម. 18067684http://www.anzhealthpolicy.com/content/4/1/25 
Asimov, Isaac (1966)។ The Noble Gases។ New York: Basic Books។ ល.ស.ប.អ. 978-0-465-05129-8 
Atkins, Peter; Jones, Loretta (2007)។ Chemical Principles: The Quest for Insight (4th រ.រ.)។ New York: W. H. Freeman។ ល.ស.ប.អ. 978-1-4292-0965-6 
Aucamp, Pieter J.; Björn, Lars Olof (2010)។ "Questions and Answers about the Environmental Effects of the Ozone Layer Depletion and Climate Change: 2010 Update"។ United Nations Environmental Programmehttp://ozone.unep.org/Assessment_Panels/EEAP/eeap-report2010-FAQ.pdf។ បានយកមក 14 October 2013 
ទំព័រគំរូ:NUBASE 2016.
Augenstein, W. L.; Spoerke, D. G.; Kulig, K. W.; Hall, A. H.; Hall, P. K.; Riggs, B. S.; El-Saadi, M.; Rumack, B. H. (1991)។ "Fluoride Ingestion in Children: A Review of 87 cases"Pediatrics 88 (5): 907–912។ អ.ស.ផ.ម. 1945630http://pediatrics.aappublications.org/cgi/content/abstract/88/5/907 
Babel, Dietrich; Tressaud, Alain (1985)។ "Crystal Chemistry of Fluorides"។ ជា Hagenmuller, Paul។ Inorganic Solid Fluorides: Chemistry And Physics។ Orlando: Academic Press។ ទំ. 78–203។ ល.ស.ប.អ. 978-0-12-412490-5 
Baelum, Vibeke; Sheiham, Aubrey; Burt, Brian (2008)។ "Caries Control for Populations"។ Dental Caries: The Disease and Its Clinical Management (2nd រ.រ.)។ Oxford: Blackwell Munksgaard។ ទំ. 505–526។ ល.ស.ប.អ. 978-1-4051-3889-5 
Baez, Ramon J.; Baez, Martha X.; Marthaler, Thomas M. (2000)។ "Urinary Fluoride Excretion by Children 4–6 Years Old in a South Texas Community"។ Revista Panamericana de Salud Pública 7 (4): 242–248។ អ.វ.ល.:10.1590/S1020-49892000000400005 
Banks, R. E. (1986)។ "Journal of Fluorine Chemistry"។ Journal of Fluorine Chemistry 33 (1–4): 3–26។ អ.វ.ល.:10.1016/S0022-1139(00)85269-0 
Barbee, K.; McCormack, K.; Vartanian, V. (2000)។ "EHS Concerns with Ozonated Water Spray Processing"។ ជា Mendicino, L.។ Environmental Issues in the Electronics and Semiconductor Industries។ Pennington, NJ: The Electrochemical Society។ ទំ. 108–121។ ល.ស.ប.អ. 978-1-56677-230-3 
Barrett, C. S.; Meyer, L.; Wasserman, J. (1967)។ "Argon—Fluorine Phase Diagram"។ The Journal of Chemical Physics 47 (2): 740–743។ Bibcode 1967JChPh..47..740Bអ.វ.ល.:10.1063/1.1711946 
Barry, Patrick L.; Phillips, Tony (26 May 2006)។ "Good News and a Puzzle"។ National Aeronautics and Space Administrationhttp://science.nasa.gov/science-news/science-at-nasa/2006/26may_ozone/។ បានយកមក 6 January 2012 
Bartlett, N. (1962)។ "Xenon Hexafluoroplatinate (V) Xe+[PtF6]"។ Proceedings of the Chemical Society (6): 218។ អ.វ.ល.:10.1039/PS9620000197 
Beasley, Michael (August 2002)។ Guidelines for the safe use of sodium fluoroacetate (1080)។ Wellington: Occupational Safety & Health Service, Department of Labour (New Zealand)។ ល.ស.ប.អ. 0-477-03664-3http://www.business.govt.nz/healthandsafetygroup/information-guidance/all-guidance-items/sodium-fluoroacetate-1080-guidelines-for-the-safe-use-of/1080guidelines.pdf។ បានយកមក 11 November 2013 
Beck, Jefferson; Newman, Paul; Schindler, Trent L.; Perkins, Lori (2011)។ "What Would have Happened to the Ozone Layer if Chlorofluorocarbons (CFCs) had not been Regulated?"។ National Aeronautics and Space Administrationhttp://svs.gsfc.nasa.gov/vis/a000000/a003500/a003586/index.html។ បានយកមក 15 October 2013 
Becker, S.; Müller, B. G. (1990)។ "Vanadium Tetrafluoride"។ Angewandte Chemie International Edition in English 29 (4): 406។ អ.វ.ល.:10.1002/anie.199004061 
Bégué, Jean-Pierre; Bonnet-Delpon, Danièle (2008)។ Bioorganic and Medicinal Chemistry of Fluorine។ Hoboken: John Wiley & Sons។ ល.ស.ប.អ. 978-0-470-27830-7 
Betts, K. S. (2007)។ [Expression error: Unrecognized punctuation character "�". "Perfluoroalkyl Acids: What is the Evidence Telling Us?"]។ Environmental Health Perspectives 115 (5): A250–A256។ អ.វ.ល.:10.1289/ehp.115-a250PMC 1867999អ.ស.ផ.ម. 17520044Expression error: Unrecognized punctuation character "�". 
Bihary, Z.; Chaban, G. M.; Gerber, R. B. (2002)។ "Stability of a Chemically Bound Helium Compound in High-pressure Solid Helium"។ The Journal of Chemical Physics 117 (11): 5105–5108។ Bibcode 2002JChPh.117.5105Bអ.វ.ល.:10.1063/1.1506150 
Biller, José (2007)។ Interface of Neurology and Internal Medicine (illustrated រ.រ.)។ Philadelphia: Lippincott Williams & Wilkins។ ល.ស.ប.អ. 0-7817-7906-5https://books.google.com/books?id=SRIvmTVcYBwC 
Blodgett, D. W.; Suruda, A. J.; Crouch, B. I. (2001)។ "Fatal Unintentional Occupational Poisonings by Hydrofluoric Acid in the U.S"American Journal of Industrial Medicine 40 (2): 215–220។ អ.វ.ល.:10.1002/ajim.1090អ.ស.ផ.ម. 11494350http://www.chem.purdue.edu/chemsafety/Equip/HFfacts12.pdf 
Bombourg, Nicolas (4 July 2012)។ "World Fluorochemicals Market, Freedonia"។ Reporterlinkerhttp://www.prnewswire.com/news-releases/world-fluorochemicals-market-freedonia-161338935.html។ បានយកមក 20 October 2013 
Brantley, L. R. (1949)។ "Fluorine"។ Pacific Rockets: Journal of the Pacific Rocket Society (South Pasadena: Sawyer Publishing/Pacific Rocket Society Historical Library) 3 (1)។ ល.ស.ប.អ. 978-0-9794418-5-1 
Brody, Jane E. (10 September 2012)។ "Popular Antibiotics May Carry Serious Side Effects"។ The New York Times Well Bloghttp://well.blogs.nytimes.com/2012/09/10/popular-antibiotics-may-carry-serious-side-effects/។ បានយកមក 18 October 2013 
Brown, Paul L.; Mompean, Federico J.; Perrone, Jane; Illemassène, Myriam (2005)។ Chemical Thermodynamics of Zirconium។ Amsterdam: Elsevier B. V.។ ល.ស.ប.អ. 978-0-444-51803-3 
Burdon, J.; Emson, B.; Edwards, A. J. (1987)។ "Is Fluorine Gas Really Yellow?"។ Journal of Fluorine Chemistry 34 (3–4): 471។ អ.វ.ល.:10.1016/S0022-1139(00)85188-X 
Bürgi, H. B. (2000)។ "Motion and Disorder in Crystal Structure Analysis: Measuring and Distinguishing them"Annual Review of Physical Chemistry 51: 275–296។ Bibcode 2000ARPC...51..275Bអ.វ.ល.:10.1146/annurev.physchem.51.1.275អ.ស.ផ.ម. 11031283http://www-bio3d-igbmc.u-strasbg.fr/~mgsb/biophys/rx/biblio/Refine/ADP-TLS/Burgi_motionsincrystal_AnnRebPhys_2000.pdf 
Burney, H. (1999)។ "Past, Present and Future of the Chlor-Alkali Industry"។ Chlor-Alkali and Chlorate Technology: R. B. MacMullin Memorial Symposium។ Pennington: The Electrochemical Society។ ទំ. 105–126។ ល.ស.ប.អ. 1-56677-244-3 
Bustamante, E.; Pedersen, P. L. (1977)។ [Expression error: Unrecognized punctuation character "�". "High Aerobic Glycolysis of Rat Hepatoma Cells in Culture: Role of Mitochondrial Hexokinase"]។ Proceedings of the National Academy of Sciences 74 (9): 3735–3739។ Bibcode 1977PNAS...74.3735Bអ.វ.ល.:10.1073/pnas.74.9.3735PMC 431708អ.ស.ផ.ម. 198801Expression error: Unrecognized punctuation character "�". 
Buznik, V. M. (2009)។ "Fluoropolymer Chemistry in Russia: Current Situation and Prospects"។ Russian Journal of General Chemistry 79 (3): 520–526។ អ.វ.ល.:10.1134/S1070363209030335 
Cameron, A. G. W. (1973)។ "Abundance of the Elements in the Solar System"Space Science Review 15: 121–146។ Bibcode 1973SSRv...15..121Cអ.វ.ល.:10.1007/BF00172440http://pubs.giss.nasa.gov/docs/1973/1973_Cameron_1.pdf 
Carey, Charles W. (2008)។ African Americans in Science។ Santa Barbara: ABC-CLIO។ ល.ស.ប.អ. 978-1-85109-998-6 
Carlson, D. P.; Schmiegel, W. (2000)។ "Fluoropolymers, Organic"។ ជា Ullmann, Franz។ Ullmann's Encyclopedia of Industrial Chemistry15។ Weinheim: Wiley-VCH។ ទំ. 495–533។ អ.វ.ល.:10.1002/14356007.a11_393ល.ស.ប.អ. 3527306730 
Centers for Disease Control and Prevention (2001)។ "Recommendations for Using Fluoride to Prevent and Control Dental Caries in the United States"MMWR Recommendations and Reports 50 (RR–14): 1–42។ អ.ស.ផ.ម. 11521913http://cdc.gov/mmwr/preview/mmwrhtml/rr5014a1.htm។ បានយកមក 14 October 2013 
Centers for Disease for Control and Prevention (10 July 2013)។ "Community Water Fluoridation"http://www.cdc.gov/fluoridation/faqs/។ បានយកមក 25 October 2013 
Chambers, C.; Holliday, A. K. (1975)។ Modern Inorganic Chemistry: An Intermediate Text។ London: Butterworth & Co.។ ល.ស.ប.អ. 978-0-408-70663-6http://files.rushim.ru/books/neorganika/Chambers.pdf 
Chang, Raymond; Goldsby, Kenneth A. (2013)។ Chemistry (11th រ.រ.)។ New York: McGraw-Hill។ ល.ស.ប.អ. 978-0-07-131787-0 
Cheng, H.; Fowler, D. E.; Henderson, P. B.; Hobbs, J. P.; Pascolini, M. R. (1999)។ "On the Magnetic Susceptibility of Fluorine"។ The Journal of Physical Chemistry A 103 (15): 2861–2866។ អ.វ.ល.:10.1021/jp9844720 
Cheng, K. K.; Chalmers, I.; Sheldon, T. A. (2007)។ "Adding Fluoride to Water Supplies"BMJ 335 (7622): 699–702។ អ.វ.ល.:10.1136/bmj.39318.562951.BEPMC 2001050អ.ស.ផ.ម. 17916854http://www.appgaf.org.uk/data/433-water-fluoridation.pdf 
Chisté, V.; Bé, M. M. (2011). Bé, M. M.. រៀ. Table de radionucléides (Report). CEA (Commissariat à l'énergie atomique et aux énergies alternatives), LIST, LNE-LNHB (Laboratoire National Henri Becquerel/Commissariat à l'Energie Atomique). http://www.nucleide.org/DDEP_WG/Nuclides/F-18_tables.pdf។ បានយកមក 15 June 2011. 
Christe, Karl O. (1986)។ "Chemical Synthesis of Elemental Fluorine"។ Inorganic Chemistry 25 (21): 3721–3722។ អ.វ.ល.:10.1021/ic00241a001 
Christe Research Group (n.d.)។ "Chemical Synthesis of Elemental Fluorine:"http://www-bcf.usc.edu/~kchriste/research.html។ បានយកមក 12 January 2013 
Clark, Jim (2002)។ "The Acidity of the Hydrogen Halides"។ chemguide.co.ukhttp://www.chemguide.co.uk/inorganic/group7/acidityhx.html។ បានយកមក 15 October 2013 
Clayton, Donald (2003)។ Handbook of Isotopes in the Cosmos: Hydrogen to Gallium។ New York: Cambridge University Press។ ល.ស.ប.អ. 978-0-521-82381-4 
Compressed Gas Association (1999)។ Handbook of Compressed Gases (4th រ.រ.)។ Boston: Kluwer Academic Publishers។ ល.ស.ប.អ. 978-0-412-78230-5 
Cordero, B.; Gómez, V.; Platero-Prats, A. E.; Revés, M.; Echeverría, J.; Cremades, E.; Barragán, F.; Alvarez, S. (2008)។ "Covalent Radii Revisited"។ Dalton Transactions (21): 2832–2838។ អ.វ.ល.:10.1039/b801115j 
Cracher, Connie M. (2012)។ "Current Concepts in Preventive Dentistry"។ dentalcare.com។ បានដាក់ទុកឯកសារ ពី[២] នៅថ្ងៃ 14 October 2013https://web.archive.org/web/20131014172105/http://www.dentalcare.com/media/en-US/education/ce334/ce334.pdf។ បានយកមក 14 October 2013 
Croswell, Ken (September 2003)។ "Fluorine: An element–ary Mystery"Sky and Telescopehttp://kencroswell.com/fluorine.html។ បានយកមក 17 October 2013 
Mitchell Crow, James (2011)។ "First signs of ozone-hole recovery spotted"។ Natureអ.វ.ល.:10.1038/news.2011.293 
Davis, Nicole។ "Better than blood"Popular Science (November 2006)។ បានដាក់ទុកឯកសារ ពី[៣] នៅថ្ងៃ 4 June 2011https://web.archive.org/web/20110604181554/http://www.popsci.com/scitech/article/2006-11/better-blood។ បានយកមក 20 October 2013 
Davy, Humphry (1813)។ "Some experiments and observations on the substances produced in different chemical processes on fluor spar"។ Philosophical Transactions of the Royal Society 103: 263–279។ អ.វ.ល.:10.1098/rstl.1813.0034 
Dean, John A. (1999)។ Lange's Handbook of Chemistry (15th រ.រ.)។ New York: McGraw-Hill។ ល.ស.ប.អ. 0-07-016190-9 
Debergalis, Michael (2004)។ "Fluoropolymer films in the photovoltaic industry"។ Journal of Fluorine Chemistry 125 (8): 1255។ អ.វ.ល.:10.1016/j.jfluchem.2004.05.013 
Directorate-General for the Environment (European Commission) (2007). Trifluralin (Report). European Commission. http://www.unece.org/fileadmin/DAM/env/lrtap/TaskForce/popsxg/2008/Trifluralin_RA%20dossier_proposal%20for%20submission%20to%20the%20UNECE%20POP%20Protocol.pdf។ បានយកមក 14 October 2013. 
Drews, T.; Supeł, J.; Hagenbach, A.; Seppelt, K. (2006)។ "Solid State Molecular Structures of Transition Metal Hexafluorides"។ Inorganic Chemistry 45 (9): 3782–3788។ អ.វ.ល.:10.1021/ic052029fអ.ស.ផ.ម. 16634614 
DuPont (2013a)។ "Freon"http://www2.dupont.com/Phoenix_Heritage/en_US/1930_d_detail.html។ បានយកមក 17 October 2013 
DuPont (2013b)។ "Understanding the Refrigerant 'R' Nomenclature"http://www2.dupont.com/Refrigerants/en_CA/products/understanding.html។ បានយកមក 17 October 2013 
Eaton, Charles (1997)។ "Figure hfl"E-Hand.com: The Electronic Textbook of Hand Surgery។ The Hand Center (former practice of Dr. Eaton)http://www.eatonhand.com/complic/figures/hfl.htm។ បានយកមក 28 September 2013 
Edwards, Philip Neil (1994)។ "Use of Fluorine in Chemotherapy"។ Organofluorine Chemistry: Principles and Commercial Applications។ New York: Plenum Press។ ទំ. 501–542។ ល.ស.ប.អ. 978-0-306-44610-8 
Einstein, F. W. B.; Rao, P. R.; Trotter, J.; Bartlett, N. (1967)។ "The Crystal Structure of Gold Trifluoride"។ Journal of the Chemical Society A: Inorganic, Physical, Theoretical 4: 478–482។ អ.វ.ល.:10.1039/J19670000478 
Eisler, Ronald (1995). Sodium Monofluoroacetate (1080) Hazards to Fish, Wildlife and Invertebrates: A Synoptic Review (Report). Patuxent Environmental Science Center (U.S. National Biological Service). http://www.pwrc.usgs.gov/eisler/CHR_30_Sodium_monofluoroacetate.pdf។ បានយកមក 5 June 2011. 
Ellis, Brian (2001)។ Scientific Essentialism។ Cambridge: Cambridge University Press។ ល.ស.ប.អ. 978-0-521-80094-5 
El-Kareh, Badih (1994)។ Fundamentals of Semiconductor Processing Technology។ Norwell and Dordrecht: Kluwer Academic Publishers។ ល.ស.ប.អ. 978-0-7923-9534-8 
El Saadi, M. S.; Hall, A. H.; Hall, P. K.; Riggs, B. S.; Augenstein, W. L.; Rumack, B. H. (1989)។ "Hydrofluoric Acid Dermal Exposure"។ Veterinary and Human Toxicology 31 (3): 243–247។ អ.ស.ផ.ម. 2741315 
Emeléus, H. J.; Sharpe, A. G. (1974)។ Advances in Inorganic Chemistry and Radiochemistry16។ New York: Academic Press។ ល.ស.ប.អ. 978-0-08-057865-1 
Emeléus, H. J.; Sharpe, A. G. (1983)។ Advances in Inorganic Chemistry and Radiochemistry27។ Academic Press។ ល.ស.ប.អ. 0-12-023627-3 
Emsley, John (1981)។ "The Hidden Strength of Hydrogen"New Scientist 91 (1264): 291–292https://books.google.com/books?id=ZbthaZCUXy4C&pg=PA292 
Emsley, John (2011)។ Nature's Building Blocks: An A–Z Guide to the Elements (2nd រ.រ.)។ Oxford: Oxford University Press។ ល.ស.ប.អ. 978-0-19-960563-7 
Energetics, Inc. (1997). Energy and Environmental Profile of the U.S. Aluminum Industry (Report). http://www1.eere.energy.gov/manufacturing/resources/aluminum/pdfs/aluminum.pdf។ បានយកមក 15 October 2013. 
Filler, R.; Saha, R. (2009)។ "Fluorine in Medicinal Chemistry: A Century of Progress and a 60-year Retrospective of Selected Highlights"Future Medicinal Chemistry 1 (5): 777–791។ អ.វ.ល.:10.4155/fmc.09.65អ.ស.ផ.ម. 21426080។ បានដាក់ទុកឯកសារ ពី[៤] នៅថ្ងៃ 22 October 2013https://web.archive.org/web/20131022021207/http://www.future-science-group.com/_img/pics/fluorine_in_medicinal_chemistry.....pdf 
Fischman, Michael L. (2001)។ Clinical Environmental Health and Toxic Exposures (2nd រ.រ.)។ Philadelphia: Lippincott Williams & Wilkins។ ទំ. 431–465។ ល.ស.ប.អ. 978-0-683-08027-8 
Forster, P.; Ramaswamy, V.; Artaxo, P.; Berntsen, T.; Betts, R.; Fahey, D. W.; Haywood, J.; Lean, J. 7et al. (2007)។ "Changes in Atmospheric Constituents and in Radiative Forcing"។ Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change។ Cambridge: Cambridge University។ ទំ. 129–234។ ល.ស.ប.អ. 978-0-521-70596-7 
Fulton, Robert B.; Miller, M. Michael (2006)។ Industrial Minerals & Rocks: Commodities, Markets, and Uses។ Littleton: Society for Mining, Metallurgy, and Exploration (U.S.)។ ទំ. 461–473។ ល.ស.ប.អ. 978-0-87335-233-8 
Gabriel, J. L.; Miller Jr, T. F.; Wolfson, M. R.; Shaffer, T. H. (1996)។ "Quantitative Structure-Activity Relationships of Perfluorinated Hetero-Hydrocarbons as Potential Respiratory Media"។ ASAIO Journal 42 (6): 968–973។ អ.វ.ល.:10.1097/00002480-199642060-00009អ.ស.ផ.ម. 8959271 
Gains, Paul (18 October 1998)។ "A New Threat in Blood Doping"The New York Timeshttps://www.nytimes.com/1998/10/18/sports/a-new-threat-in-blood-doping.html។ បានយកមក 18 October 2013 
Gessner, B. D.; Beller, M.; Middaugh, J. P.; Whitford, G. M. (1994)។ "Acute Fluoride Poisoning from a Public Water System"។ New England Journal of Medicine 330 (2): 95–99។ អ.វ.ល.:10.1056/NEJM199401133300203អ.ស.ផ.ម. 8259189 
Giesy, J. P.; Kannan, K. (2002)។ "Perfluorochemical Surfactants in the Environment"។ Environmental Science & Technology 36 (7): 146A–152A។ អ.វ.ល.:10.1021/es022253tអ.ស.ផ.ម. 11999053 
Godfrey, S. M.; McAuliffe, C. A.; Mackie, A. G.; Pritchard, R. G. (1998)។ "Inorganic Derivatives of the Elements"។ ជា Norman, Nicholas C.។ Chemistry of Arsenic, Antimony and Bismuth។ London: Blackie Academic & Professional។ ទំ. 67–158។ ល.ស.ប.អ. 978-0-7514-0389-3 
Green, S. W.; Slinn, D. S. L.; Simpson, R. N. F.; Woytek, A. J. (1994)។ "Perfluorocarbon Fluids"។ Organofluorine Chemistry: Principles and Applications។ New York: Plenum Press។ ទំ. 89–119។ ល.ស.ប.អ. 978-0-306-44610-8 
Greenwood, N. N.; Earnshaw, A. (1998)។ Chemistry of the Elements (2nd រ.រ.)។ Oxford: Butterworth Heinemann។ ល.ស.ប.អ. 0-7506-3365-4 
Gribble, G. W. (2002)។ "Naturally Occurring Organofluorines"។ ជា Neison, A. H.។ Organofluorines។ The Handbook of Environmental Chemistry។ 3N។ Berlin: Springer។ ទំ. 121–136។ អ.វ.ល.:10.1007/10721878_5ល.ស.ប.អ. 3-540-42064-9 
Grot, Walter (2011)។ Fluorinated Ionomers (2nd រ.រ.)។ Oxford and Waltham: Elsevier។ ល.ស.ប.អ. 978-1-4377-4457-6 
Hagmann, W. K. (2008)។ "The Many Roles for Fluorine in Medicinal Chemistry"។ Journal of Medicinal Chemistry 51 (15): 4359–4369។ អ.វ.ល.:10.1021/jm800219fអ.ស.ផ.ម. 18570365 
Harbison, G. S. (2002)។ "The Electric Dipole Polarity of the Ground and Low-lying Metastable Excited States of NF"។ Journal of the American Chemical Society 124 (3): 366–367។ អ.វ.ល.:10.1021/ja0159261អ.ស.ផ.ម. 11792193 
Hasegawa, Y.; Otani, R.; Yonezawa, S.; Takashima, M. (2007)។ "Reaction Between Carbon Dioxide and Elementary Fluorine"។ Journal of Fluorine Chemistry 128 (1): 17–28។ អ.វ.ល.:10.1016/j.jfluchem.2006.09.002 
Haxel, G. B.; Hedrick, J. B.; Orris, G. J. (2005). Rare Earth Elements—Critical Resources for High Technology, Fact Sheet 087-02 (Report). U.S. Geological Survey. http://pubs.usgs.gov/fs/2002/fs087-02/។ បានយកមក 31 January 2014. 
Haynes, William M., រៀ. (2011)។ Handbook of Chemistry and Physics (92nd រ.រ.)។ Boca Raton: CRC Press។ ល.ស.ប.អ. 1-4398-5511-0 
Hoffman, Robert; Nelson, Lewis; Howland, Mary; Lewin, Neal; Flomenbaum, Neal; Goldfrank, Lewis (2007)។ Goldfrank's Manual of Toxicologic Emergencies។ New York: McGraw-Hill Professional។ ល.ស.ប.អ. 978-0-07-144310-4 
Honeywell (2006)។ Recommended medical treatment for hydrofluoric acid exposure។ Morristown: Honeywell Internationalhttp://www.colorado.edu/ehs/pdf/HWMedHFExpo.pdf។ បានយកមក 9 January 2014 
Hoogers, G. (2002)។ Hoogers, G.។ រៀ.។ Fuel Cell Technology Handbook។ Boca Raton: CRC Press។ ទំ. 4–1–4–27។ ល.ស.ប.អ. 0-8493-0877-1 
Hounshell, David A.; Smith, John Kelly (1988)។ Science and Corporate Strategy: DuPont R & D, 1902–1980។ Cambridge: Cambridge University Press។ ល.ស.ប.អ. 0-521-32767-9 
Hultén, P.; Höjer, J.; Ludwigs, U.; Janson, A. (2004)។ "Hexafluorine vs. Standard Decontamination to Reduce Systemic Toxicity After Dermal Exposure to Hydrofluoric Acid"។ Clinical Toxicology 42 (4): 355–361។ អ.វ.ល.:10.1081/CLT-120039541អ.ស.ផ.ម. 15461243 
ICIS (2 October 2006)។ "Fluorine's Treasure Trove"។ Reed Business Informationhttp://www.icis.com/Articles/2006/09/30/2016413/fluorines-treasure-trove.html។ បានយកមក 24 October 2013 
Jaccaud, M.; Faron, R.; Devilliers, D.; Romano, R. (2000)។ "Fluorine"។ ជា Ullmann, Franz។ Ullmann's Encyclopedia of Industrial Chemistry15។ Weinheim: Wiley-VCH។ ទំ. 381–395។ អ.វ.ល.:10.1002/14356007.a11_293ល.ស.ប.អ. 3527306730 
Johnson, Linda A. (28 December 2011)។ "Against Odds, Lipitor Became World's Top Seller"The Boston Globehttp://www.boston.com/business/articles/2011/12/28/against_odds_lipitor_became_worlds_top_seller/។ បានយកមក 24 October 2013 
Kacmarek, Robert M.; Wiedemann, Herbert P.; Lavin, Philip T.; Wedel, Mark K.; Tütüncü, Ahmet S.; Slutsky, Arthur S. (2006)។ "Partial Liquid Ventilation in Adult Patients with Acute Respiratory Distress Syndrome"។ American Journal of Respiratory and Critical Care Medicine 173 (8): 882។ អ.វ.ល.:10.1164/rccm.200508-1196OCអ.ស.ផ.ម. 16254269 
Katakuse, Itsuo; Ichihara, Toshio; Ito, Hiroyuki; Sakurai, Tohru; Matsuo, Takekiyo (1999)។ "SIMS Experiment"។ Mesoscopic Materials and Clusters: Their Physical and Chemical Properties។ Tokyo: Kodansha។ ទំ. 259–273។ ល.ស.ប.អ. 4-06-208635-2 
Kelly, T. D.; Miller, M. M. (2005)។ "Historical Fluorspar Statistics"។ U.S. Geological Servicehttp://minerals.usgs.gov/ds/2005/140/ds140-fluor.xlsx។ បានយកមក 10 February 2014 
Keplinger, M. L.; Suissa, L. W. (1968)។ "Toxicity of Fluorine Short-Term Inhalation"។ American Industrial Hygiene Association Journal 29 (1): 10–18។ អ.វ.ល.:10.1080/00028896809342975អ.ស.ផ.ម. 5667185 
Kern, S.; Hayward, J.; Roberts, S.; Richardson, J. W.; Rotella, F. J.; Soderholm, L.; Cort, B.; Tinkle, M. 7et al. (1994)។ "Temperature Variation of the Structural Parameters in Actinide Tetrafluorides"។ The Journal of Chemical Physics 101 (11): 9333–9337។ Bibcode 1994JChPh.101.9333Kអ.វ.ល.:10.1063/1.467963 
Khriachtchev, L.; Pettersson, M.; Runeberg, N.; Lundell, J.; Räsänen, M. (2000)។ "A Stable Argon Compound"Nature 406 (6798): 874–876។ អ.វ.ល.:10.1038/35022551អ.ស.ផ.ម. 10972285http://www.nature.com/nature/journal/v406/n6798/abs/406874a0.html 
King, D. E.; Malone, R.; Lilley, S. H. (2000)។ "New Classification and Update on the Quinolone Antibiotics"American Family Physician 61 (9): 2741–2748។ អ.ស.ផ.ម. 10821154http://www.aafp.org/afp/2000/0501/p2741.html។ បានយកមក 8 October 2013 
Kirsch, Peer (2004)។ Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications។ Weinheim: Wiley-VCH។ ល.ស.ប.អ. 978-3-527-30691-6 
Kissa, Erik (2001)។ Fluorinated Surfactants and Repellents (2nd រ.រ.)។ New York: Marcel Dekker។ ល.ស.ប.អ. 978-0-8247-0472-8 
Kuriakose, A. K.; Margrave, J. L. (1965)។ "Kinetics of the Reactions of Elemental Fluorine. IV. Fluorination of Graphite"។ Journal of Physical Chemistry 69 (8): 2772–2775។ អ.វ.ល.:10.1021/j100892a049 
Lagow, R. J. (1970)។ The Reactions of Elemental Fluorine; A New Approach to Fluorine Chemistry (PhD thesis, Rice University, TX)។ Ann Arbor: UMIhttp://scholarship.rice.edu/bitstream/handle/1911/16744/9514194.PDF 
Lau, C.; Anitole, K.; Hodes, C.; Lai, D.; Pfahles-Hutchens, A.; Seed, J. (2007)។ "Perfluoroalkyl Acids: A Review of Monitoring and Toxicological Findings"Toxicological Sciences 99 (2): 366–394។ អ.វ.ល.:10.1093/toxsci/kfm128អ.ស.ផ.ម. 17519394http://toxsci.oxfordjournals.org/content/99/2/366.full.pdf 
Lewars, Errol G. (2008)។ Modeling Marvels: Computational Anticipation of Novel Molecules។ Dordrecht: Springer។ ល.ស.ប.អ. 1-4020-6972-3https://books.google.com/?id=IoFzgBSSCwEC&pg=PA70 
Lide, David R. (2004)។ Handbook of Chemistry and Physics (84th រ.រ.)។ Boca Raton: CRC Press។ ល.ស.ប.អ. 0-8493-0566-7 
Lidin, R.; Molochko, V. A.; Andreeva, L. L. (2000) (ជាRussian)។ Химические свойства неорганических веществ [Chemical Properties of Inorganic Substances]។ Moscow: Khimiya។ ល.ស.ប.អ. 5-7245-1163-0 
Liteplo, R.; Gomes, R.; Howe, P.; Malcolm, H. (2002)។ Environmental Health Criteria 227 (Fluoride)។ Geneva: United Nations Environment Programme; International Labour Organization; World Health Organization។ ល.ស.ប.អ. 92-4-157227-2http://www.inchem.org/documents/ehc/ehc/ehc227.htm។ បានយកមក 14 October 2013 
Lusty, P. A. J.; Brown, T. J.; Ward, J.; Bloomfield, S. (2008)។ "The Need for Indigenous Fluorspar Production in England"។ British Geological Surveyhttp://www.bgs.ac.uk/downloads/start.cfm?id=1328។ បានយកមក 13 October 2013 
Mackay, Kenneth Malcolm; Mackay, Rosemary Ann; Henderson, W. (2002)។ Introduction to Modern Inorganic Chemistry (6th រ.រ.)។ Cheltenham: Nelson Thornes។ ល.ស.ប.អ. 0-7487-6420-8 
Macomber, Roger (1996)។ Organic chemistry1។ Sausalito: University Science Books។ ល.ស.ប.អ. 978-0-935702-90-3 
Marggraf, Andreas Sigismun (1770)។ "Observation concernant une volatilisation remarquable d'une partie de l'espece de pierre, à laquelle on donne les noms de flosse, flüsse, flus-spaht, et aussi celui d'hesperos; laquelle volatilisation a été effectuée au moyen des acides [Observation of a remarkable volatilization of part of a type of stone to which one gives the name flosse, flüsse, flus-spaht, as well as that of hesperos; which volatilization was effected by means of acids]" (ជាFrench)។ Mémoires de l'Académie royale des sciences et belles-lettres XXIV: 3–11https://books.google.com/books?id=f28pAXS5SGIC&pg=PA3 
Martin, John W., រៀ. (2007)។ Concise Encyclopedia of the Structure of Materials។ Oxford and Amsterdam: Elsevier។ ល.ស.ប.អ. 978-0-08-045127-5 
Marya, C. M. (2011)។ A Textbook of Public Health Dentistry។ New Delhi: Jaypee Brothers Medical Publishers។ ល.ស.ប.អ. 978-93-5025-216-1 
Matsui, M. (2006)។ "Fluorine-containing Dyes"។ ជា Kim, Sung-Hoon។ Functional dyes។ Orlando: Academic Press។ ទំ. 257–266។ ល.ស.ប.អ. 978-0-12-412490-5 
Meusinger, Reinhard; Chippendale, A. Margaret; Fairhurst, Shirley A. (2012)។ "Nuclear Magnetic Resonance and Electron Spin Resonance Spectroscopy"។ ជា Ullmann, Franz។ Ullmann's Encyclopedia of Industrial Chemistry24។ Weinheim: Wiley-VCH។ ទំ. 609–660។ អ.វ.ល.:10.1002/14356007.b05_471 
Meyer, Eugene (1977)។ Chemistry of Hazardous Materials។ Englewood Cliffs: Prentice Hall។ ល.ស.ប.អ. 978-0-13-129239-0 
Miller, M. Michael (2003a)។ "Fluorspar"U.S. Geological Survey Minerals Yearbook។ U.S. Geological Survey។ ទំ. 27.1–27.12http://minerals.usgs.gov/minerals/pubs/commodity/fluorspar/fluormyb03.pdf 
Miller, M. Michael (2003b)។ "Mineral Resource of the Month, Fluorspar"។ U.S. Geological Surveyhttp://minerals.usgs.gov/mineralofthemonth/fluorspar.pdf។ បានយកមក 24 October 2013 
Mitchell, E. Siobhan (2004)។ Antidepressants។ New York: Chelsea House Publishers។ ល.ស.ប.អ. 978-1-4381-0192-7 
Moeller, T.; Bailar, J. C.; Kleinberg (1980)។ Chemistry, with Inorganic Qualitative Analysis (3rd រ.រ.)។ New York: Academic Press។ ល.ស.ប.អ. 0-12-503350-8 
Moissan, Henri (1886)។ "Action d'un courant électrique sur l'acide fluorhydrique anhydre" (ជាFrench)។ Comptes rendus hebdomadaires des séances de l'Académie des sciences 102: 1543–1544http://gallica.bnf.fr/ark:/12148/bpt6k3058f/f1541.chemindefer។ បានយកមក 9 October 2013 
McCoy, M. (2007)។ "SURVEY Market Challenges Dim the Confidence of the World's Chemical CEOs"។ Chemical & Engineering News 85 (23): 11។ អ.វ.ល.:10.1021/cen-v085n023.p011a 
Moore, John W.; Stanitski, Conrad L.; Jurs, Peter C. (2010)។ Principles of Chemistry: The Molecular Science។ Belmont: Brooks/Cole។ ល.ស.ប.អ. 978-0-495-39079-4 
Morrow, S. I.; Perry, D. D.; Cohen, M. S. (1959)។ "The Formation of Dinitrogen Tetrafluoride in the Reaction of Fluorine and Ammonia"។ Journal of the American Chemical Society 81 (23): 6338–6339។ អ.វ.ល.:10.1021/ja01532a066 
Müller, Peter (2009)។ "5.067 Crystal Structure Refinement"។ Cambridge: MIT OpenCourseWarehttp://ocw.mit.edu/courses/chemistry/5-067-crystal-structure-refinement-fall-2009/lecture-notes/MIT5_067F09_lec4.pdf។ បានយកមក 13 October 2013 
Murphy, C. D.; Schaffrath, C.; O'Hagan, D. (2003)។ "Fluorinated Natural Products: The Biosynthesis of Fluoroacetate and 4-Fluorothreonine in Streptomyces cattleya"។ Chemosphere 52 (2): 455–461។ អ.វ.ល.:10.1016/S0045-6535(03)00191-7អ.ស.ផ.ម. 12738270 
Murthy, C. Parameshwara; Mehdi Ali, S. F.; Ashok, D. (1995)។ University ChemistryI។ New Delhi: New Age International។ ល.ស.ប.អ. 978-81-224-0742-6 
National Health and Medical Research Council (2007)។ "A Systematic Review of the Efficacy and Safety of Fluoridation, Part A: Review of Methodology and Results"។ Canberra: Australian Government។ ល.ស.ប.អ. 1-86496-421-9http://www.nhmrc.gov.au/_files_nhmrc/publications/attachments/eh41_1.pdf។ បានយកមក 8 October 2013 
The National Institute for Occupational Safety and Health (1994)។ "Fluorine"Documentation for Immediately Dangerous To Life or Health Concentrations (IDLHs)http://www.cdc.gov/niosh/idlh/7782414.html។ បានយកមក 15 January 2014 
The National Institute for Occupational Safety and Health (1994)។ "Chlorine"Documentation for Immediately Dangerous To Life or Health Concentrations (IDLHs)http://www.cdc.gov/niosh/idlh/7782505.html។ បានយកមក 13 July 2014 
National Nuclear Data Center"NuDat 2.1 Database"។ Brookhaven National Laboratoryhttp://www.nndc.bnl.gov/nudat2/។ បានយកមក 25 October 2013 
National Oceanic and Atmospheric Administration។ "UN/NA 1045 (United Nations/North America Fluorine Data Sheet)"http://cameochemicals.noaa.gov/unna/1045។ បានយកមក 15 October 2013 
Navarrini, Walter; Venturini, Francesco; Tortelli, Vito; Basak, Soubir; Pimparkar, Ketan P.; Adamo, Andrea; Jensen, Klavs F. (2012)។ "Direct fluorination of carbon monoxide in microreactors"។ Journal of Fluorine Chemistry 142: 19។ អ.វ.ល.:10.1016/j.jfluchem.2012.06.006 
Nelson, Eugene W. (1947)។ "'Bad Man' of The Elements"Popular Mechanics 88 (2): 106–108, 260https://books.google.com/books?id=1t8DAAAAMBAJ&pg=PA106 
Nelson, J. M.; Chiller, T. M.; Powers, J. H.; Angulo, F. J. (2007)។ "Food Safety: Fluoroquinolone‐ResistantCampylobacterSpecies and the Withdrawal of Fluoroquinolones from Use in Poultry: A Public Health Success Story"Clinical Infectious Diseases 44 (7): 977–980។ អ.វ.ល.:10.1086/512369អ.ស.ផ.ម. 17342653http://www.cdc.gov/narms/pdf/JNelson_FluoroquinoloneRCampy_CID.pdf 
Nielsen, Forrest H. (2009)។ "Micronutrients in Parenteral Nutrition: Boron, Silicon, and Fluoride"។ Gastroenterology 137 (5): S55–60។ អ.វ.ល.:10.1053/j.gastro.2009.07.072អ.ស.ផ.ម. 19874950 
Norwood, Charles J.; Fohs, F. Julius (1907)។ Kentucky Geological Survey, Bulletin No. 9: Fluorspar Deposits of Kentucky។ Kentucky Geological Surveyhttps://archive.org/details/bulletin01kentgoog 
Noury, S.; Silvi, B.; Gillespie, R. J. (2002)។ "Chemical Bonding in Hypervalent Molecules: Is the Octet Rule Relevant?"Inorganic Chemistry 41 (8): 2164–2172។ អ.វ.ល.:10.1021/ic011003vអ.ស.ផ.ម. 11952370http://alpha.chem.umb.edu/chemistry/Seminar/06-09%20WQE/InorgI.Carter.pdf។ បានយកមក 23 May 2012 
O'Hagan, D. (2008)។ "Understanding Organofluorine Chemistry. An Introduction to the C–F Bond"។ Chemical Society Reviews 37 (2): 308–319។ អ.វ.ល.:10.1039/b711844aអ.ស.ផ.ម. 18197347 
O'Hagan, D.; Schaffrath, C.; Cobb, S. L.; Hamilton, J. T. G.; Murphy, C. D. (2002)។ "Biochemistry: Biosynthesis of an Organofluorine Molecule"។ Nature 416 (6878): 279។ Bibcode 2002Natur.416..279Oអ.វ.ល.:10.1038/416279aអ.ស.ផ.ម. 11907567 
Okada, T.; Xie, G.; Gorseth, O.; Kjelstrup, S.; Nakamura, N.; Arimura, T. (1998)។ "Ion and Water Transport Characteristics of Nafion Membranes as Electrolytes"។ Electrochimica Acta 43 (24): 3741–3747។ អ.វ.ល.:10.1016/S0013-4686(98)00132-7 
Okazoe, T. (2009)។ "Overview on the History of Organofluorine Chemistry from the Viewpoint of Material Industry"Proceedings of the Japan Academy, Series B 85 (8): 276–289។ Bibcode 2009PJAB...85..276Oអ.វ.ល.:10.2183/pjab.85.276http://www.jstage.jst.go.jp/article/pjab/85/8/85_8_276/_pdf 
Olivares, M.; Uauy, R. (2004). Essential Nutrients in Drinking Water (Draft) (Report). World Health Organization (WHO). បានដាក់ទុកឯកសារ ពី[៥] នៅថ្ងៃ 19 October 2012. https://web.archive.org/web/20121019174633/http://www.who.int/water_sanitation_health/dwq/en/nutoverview.pdf។ បានយកមក 14 October 2013. 
Parente, Luca (2001)។ "The Development of Synthetic Glucocorticoids"។ Glucocorticoids។ Basel: Birkhäuser។ ទំ. 35–53។ ល.ស.ប.អ. 978-3-7643-6059-7 
Partington, J. R. (1923)។ "The early history of hydrofluoric acid"។ Memoirs and Proceedings of the Manchester Literary and Philosophical Society 67 (6): 73–87។ 
Patnaik, Pradyot (2007)។ A Comprehensive Guide to the Hazardous Properties of Chemical Substances (3rd រ.រ.)។ Hoboken: John Wiley & Sons។ ល.ស.ប.អ. 978-0-471-71458-3 
Pauling, Linus (1960)។ The Nature of the Chemical Bond (3rd រ.រ.)។ Ithaca: Cornell University Press។ ល.ស.ប.អ. 978-0-8014-0333-0 
Pauling, L.; Keaveny, I.; Robinson, A. B. (1970)។ "The Crystal Structure of α-Fluorine"។ Journal of Solid State Chemistry 2 (2): 225–227។ Bibcode 1970JSSCh...2..225Pអ.វ.ល.:10.1016/0022-4596(70)90074-5 
Perry, Dale L. (2011)។ Handbook of Inorganic Compounds (2nd រ.រ.)។ Boca Raton: CRC Press។ ល.ស.ប.អ. 978-1-4398-1461-1 
Pitzer, K. S. (1975)។ "Fluorides of Radon and Element 118"។ Journal of the Chemical Society, Chemical Communications (18): 760b–761។ អ.វ.ល.:10.1039/C3975000760B 
Pitzer, Kenneth S., រៀ. (1993)។ Molecular Structure and Statistical Thermodynamics: Selected Papers of Kenneth S. Pitzer។ Singapore: World Scientific Publishing។ ល.ស.ប.អ. 978-981-02-1439-5 
Pizzo, G.; Piscopo, M. R.; Pizzo, I.; Giuliana, G. (2007)។ "Community Water Fluoridation and Caries Prevention: A Critical Review"Clinical Oral Investigations 11 (3): 189–193។ អ.វ.ល.:10.1007/s00784-007-0111-6អ.ស.ផ.ម. 17333303http://www.newmediaexplorer.org/chris/Pizzo-2007.pdf 
Posner, Stefan (2011)។ Polyfluorinated Chemicals and Transformation Products។ Heidelberg: Springer Science+Business Media។ ទំ. 25–40។ ល.ស.ប.អ. 978-3-642-21871-2 
Posner, Stefan (2013)។ Per- and Polyfluorinated Substances in the Nordic Countries: Use Occurrence and Toxicology។ Copenhagen: Nordic Council of Ministers។ អ.វ.ល.:10.6027/TN2013-542ល.ស.ប.អ. 978-92-893-2562-2 
Preskorn, Sheldon H. (1996)។ Clinical Pharmacology of Selective Serotonin Reuptake Inhibitors។ Caddo: Professional Communications។ ល.ស.ប.អ. 978-1-884735-08-0 
Principe, Lawrence M. (2012)។ The Secrets of Alchemy។ Chicago: University of Chicago Press។ ល.ស.ប.អ. 978-0-226-68295-2 
Proudfoot, A. T.; Bradberry, S. M.; Vale, J. A. (2006)។ "Sodium Fluoroacetate Poisoning"។ Toxicological Reviews 25 (4): 213–219។ អ.វ.ល.:10.2165/00139709-200625040-00002អ.ស.ផ.ម. 17288493 
PRWeb (28 October 2010)។ "Global Fluorochemicals Market to Exceed 2.6 Million Tons by 2015, According to a New Report by Global Industry Analysts, Inc."។ prweb.comhttp://www.prweb.com/releases/fluorochemicals/organic_inorganic/prweb4708534.htm។ បានយកមក 24 October 2013 
PRWeb (23 February 2012)។ "Global Fluorspar Market to Reach 5.94 Million Metric Tons by 2017, According to New Report by Global Industry Analysts, Inc."។ prweb.comhttp://www.prweb.com/releases/fluorspar_fluorite/fluorocarbons/prweb9221596.htm។ បានយកមក 24 October 2013 
PRWeb (7 April 2013)។ "Fluoropolymers Market is Poised to Grow at a CAGR of 6.5% & to Reach $9,446.0 Million by 2016 – New report by MarketsandMarkets"។ prweb.comhttp://www.prweb.com/releases/fluoropolymers/market/prweb10608563.htm។ បានយកមក 24 October 2013 
Pyykkö, Pekka; Atsumi, Michiko (2009)។ "Molecular Double-Bond Covalent Radii for Elements Li–E112"។ Chemistry: A European Journal 15 (46): 12770។ អ.វ.ល.:10.1002/chem.200901472 
Raghavan, P. S. (1998)។ Concepts and Problems in Inorganic Chemistry។ Delhi: Discovery Publishing House។ ល.ស.ប.អ. 978-81-7141-418-5 
Raj, P. Prithvi; Erdine, Serdar (2012)។ Pain-Relieving Procedures: The Illustrated Guide។ Chichester: John Wiley & Sons។ ល.ស.ប.អ. 978-0-470-67038-5 
Ramkumar, Jayshree (2012)។ "Nafion Perfluorosulphonate Membrane: Unique Properties and Various Applications"។ Functional Materials: Preparation, Processing and Applications។ London and Waltham: Elsevier។ ទំ. 549–578។ ល.ស.ប.អ. 978-0-12-385142-0 
Reddy, D. (2009)។ "Neurology of Endemic Skeletal Fluorosis"។ Neurology India 57 (1): 7–12។ អ.វ.ល.:10.4103/0028-3886.48793អ.ស.ផ.ម. 19305069 
Renda, Agostino; Fenner, Yeshe; Gibson, Brad K.; Karakas, Amanda I.; Lattanzio, John C.; Campbell, Simon; Chieffi, Alessandro; Cunha, Katia 7et al. (2004)។ "On the origin of fluorine in the Milky Way"។ Monthly Notices of the Royal Astronomical Society 354 (2): 575។ Bibcode 2004MNRAS.354..575Rអ.វ.ល.:10.1111/j.1365-2966.2004.08215.x 
Renner, R. (2006)។ "The Long and the Short of Perfluorinated Replacements"។ Environmental Science & Technology 40 (1): 12–13។ Bibcode 2006EnST...40...12Rអ.វ.ល.:10.1021/es062612aអ.ស.ផ.ម. 16433328 
Rhoades, David Walter (2008)។ Broadband Dielectric Spectroscopy Studies of Nafion (PhD dissertation, University of Southern Mississippi, MS)។ Ann Arbor: ProQuest។ ល.ស.ប.អ. 978-0-549-78540-8 
Richter, M.; Hahn, O.; Fuchs, R. (2001)។ "Purple Fluorite: A Little Known Artists' Pigment and Its Use in Late Gothic and Early Renaissance Painting in Northern Europe"។ Studies in Conservation 46 (1): 1–13។ អ.វ.ល.:10.1179/sic.2001.46.1.1JSTOR 1506878 
Riedel, Sebastian; Kaupp, Martin (2009)។ "The highest oxidation states of the transition metal elements"។ Coordination Chemistry Reviews 253 (5–6): 606។ អ.វ.ល.:10.1016/j.ccr.2008.07.014 
Ripa, L. W. (2008)។ "A Half-century of Community Water Fluoridation in the United States: Review and Commentary"Journal of Public Health Dentistry 53 (1): 17–44។ អ.វ.ល.:10.1111/j.1752-7325.1993.tb02666.xអ.ស.ផ.ម. 8474047http://aaphd.org/docs/position%20papers/A%20Half-Century%20of%20Community%20Water1993.pdf 
Roblin, I.; Urban, M.; Flicoteau, D.; Martin, C.; Pradeau, D. (2006)។ "Topical Treatment of Experimental Hydrofluoric Acid Skin Burns by 2.5% Calcium Gluconate"។ Journal of Burn Care & Research 27 (6): 889–894។ អ.វ.ល.:10.1097/01.BCR.0000245767.54278.09អ.ស.ផ.ម. 17091088 
Salager, Jean-Louis (2002)។ Surfactants: Types and Uses។ FIRP Booklet # 300-A។ Laboratory of Formulation, Interfaces, Rheology, and Processes, Universidad de los Andeshttp://nanoparticles.org/pdf/Salager-E300A.pdf។ បានយកមក 13 October 2013 
Sandford, Graham (2000)។ "Organofluorine Chemistry"។ Philosophical Transactions 358 (1766): 455–471។ អ.វ.ល.:10.1098/rsta.2000.0541 
Sarkar, S. (2008)។ [Expression error: Unrecognized punctuation character "�". "Artificial Blood"]។ Indian Journal of Critical Care Medicine 12 (3): 140–144។ អ.វ.ល.:10.4103/0972-5229.43685PMC 2738310អ.ស.ផ.ម. 19742251Expression error: Unrecognized punctuation character "�". 
Scheele, Carl Wilhelm (1771)។ "Undersŏkning om fluss-spat och dess syra [Investigation of Fluorite and Its Acid]" (ជាSwedish)។ Kungliga Svenska Vetenskapsademiens Handlingar [Proceedings of the Royal Swedish Academy of Science] 32: 129–138https://books.google.com/books?id=d984AAAAMAAJ&pg=PA120 
Schimmeyer, S. (2002)។ "The Search for a Blood Substitute"Illumin (Columbia: University of Southern Carolina) 15 (1)http://illumin.usc.edu/article.php?articleID=62។ បានយកមក 15 October 2013 
Schlöder, T.; Riedel, S. (2012)។ "Investigation of Heterodimeric and Homodimeric Radical Cations of the Series: [F2O2]+, [F2Cl2]+, [Cl2O2]+, [F4]+, and [Cl4]+"។ RSC Advances (Royal Society of Chemistry) 2 (3): 876–881។ អ.វ.ល.:10.1039/C1RA00804H 
Schmedt Auf Der Günne, Jörn; Mangstl, Martin; Kraus, Florian (2012)។ "Occurrence of Difluorine F2in Nature-In Situ Proof and Quantification by NMR Spectroscopy"។ Angewandte Chemie International Edition 51 (31): 7847។ អ.វ.ល.:10.1002/anie.201203515អ.ស.ផ.ម. 22763992 
Schmitz, A.; Kälicke, T.; Willkomm, P.; Grünwald, F.; Kandyba, J.; Schmitt, O. (2000)។ "Use of Fluorine-18 Fluoro-2-deoxy-D-glucose Positron Emission Tomography in Assessing the Process of Tuberculous Spondylitis"Journal of Spinal Disorders 13 (6): 541–544។ អ.វ.ល.:10.1097/00002517-200012000-00016អ.ស.ផ.ម. 11132989http://www.ecios.org/Synapse/Data/PDFData/0157CIOS/cios-2-167.pdf។ បានយកមក 8 October 2013 
Schulze-Makuch, D.; Irwin, L. N. (2008)។ Life in the Universe: Expectations and Constraints (2nd រ.រ.)។ Berlin: Springer-Verlag។ ល.ស.ប.អ. 978-3-540-76816-6 
Schwarcz, Joseph A. (2004)។ The Fly in the Ointment: 70 Fascinating Commentaries on the Science of Everyday Life។ Toronto: ECW Press។ ល.ស.ប.អ. 1-55022-621-5 
Senning, A. (2007)។ Elsevier's Dictionary of Chemoetymology: The Whies and Whences of Chemical Nomenclature and Terminology។ Amsterdam and Oxford: Elsevier។ ល.ស.ប.អ. 978-0-444-52239-9 
Shaffer, T. H.; Wolfson, M. R.; Clark Jr, L. C. (1992)។ "Liquid Ventilation"។ Pediatric Pulmonology 14 (2): 102–109។ អ.វ.ល.:10.1002/ppul.1950140208អ.ស.ផ.ម. 1437347 
Shin, Richard D.; Silverberg, Mark A. (2013)។ "Fluoride Toxicity"។ Medscapehttp://emedicine.medscape.com/article/814774-overview។ បានយកមក 15 October 2013 
Shriver, Duward; Atkins, Peter (2010)។ Solutions Manual for Inorganic Chemistry។ New York: W. H. Freeman។ ល.ស.ប.អ. 978-1-4292-5255-3 
Shulman, J. D.; Wells, L. M. (1997)។ "Acute Fluoride Toxicity from Ingesting Home-use Dental Products in Children, Birth to 6 Years of Age"។ Journal of Public Health Dentistry 57 (3): 150–158។ អ.វ.ល.:10.1111/j.1752-7325.1997.tb02966.xអ.ស.ផ.ម. 9383753 
Siegemund, G. N.; Schwertfeger, W.; Feiring, A.; Smart, B.; Behr, F.; Vogel, H.; McKusick, B. (2000)។ "Fluorine Compounds, Organic"។ ជា Ullmann, Franz។ Ullmann's Encyclopedia of Industrial Chemistry15។ Weinheim: Wiley-VCH។ ទំ. 443–494។ អ.វ.ល.:10.1002/14356007.a11_349ល.ស.ប.អ. 3527306730 
Slye, Orville M. (2012)។ "Fire Extinguishing Agents"។ ជា Ullmann, Franz។ Ullmann's Encyclopedia of Industrial Chemistry15។ Weinheim: Wiley-VCH។ ទំ. 1–11។ អ.វ.ល.:10.1002/14356007.a11_113.pub2 
Steenland, K.; Fletcher, T.; Savitz, D. A. (2010)។ [Expression error: Unrecognized punctuation character "�". "Epidemiologic Evidence on the Health Effects of Perfluorooctanoic Acid (PFOA)"]។ Environmental Health Perspectives 118 (8): 1100–1108។ អ.វ.ល.:10.1289/ehp.0901827PMC 2920088អ.ស.ផ.ម. 20423814Expression error: Unrecognized punctuation character "�". 
Stillman, John Maxson (December 1912)។ "Basil Valentine, A Seventeenth Century Hoax"Popular Science Monthly 81https://books.google.co.uk/books?id=7SQDAAAAMBAJ&pg=PA591&dq=%22Basil+Valentine%22,+hoax។ បានយកមក 14 October 2013 
Storer, Frank H. (1864)។ First Outlines of a Dictionary of Solubilities of Chemical Substances។ Cambridge: Sever and Francishttps://books.google.co.uk/books?id=KPyLb5f-p4EC&pg=PP7 
Swinson, Joel (June 2005)។ "Fluorine – A Vital Element in the Medicine Chest"PharmaChem (Pharmaceutical Chemistry): 26–27http://www.halocarbon.com/halocarbon_media/swinson_109.pdf។ បានយកមក 9 October 2013 
Taber, Andrew (22 April 1999)។ "Dying to ride"Salonhttp://www.salon.com/1999/04/21/cycling/។ បានយកមក 18 October 2013 
Tanner Industries (January 2011)។ "Anhydrous Ammonia: (MSDS) Material Safety Data Sheet"។ tannerind.comhttp://www.tannerind.com/anhydrous-msds.html។ បានយកមក 24 October 2013 
Theodoridis, George (2006)។ "Fluorine-Containing Agrochemicals: An Overview of Recent Developments"។ ជា Tressaud, Alain។ Fluorine and the Environment : Agrochemicals, Archaeology, Green Chemistry & Water។ Amsterdam and Oxford: Elsevier។ ទំ. 121–176។ ល.ស.ប.អ. 978-0-444-52672-4 
Toon, Richard (2011)។ "Fluorine, An Obsession with a Tragic Past"Education in Chemistry 48 (5): 148–151http://www.rsc.org/images/EiC_Sept2011_fluorine_tcm18-207109.pdf 
Transparency Market Research (17 May 2013)។ "Fluorochemicals Market is Expected to Reach USD 21.5 Billion Globally by 2018: Transparency Market Research"។ Transparency Market Research Bloghttp://www.tmrblog.com/2013/05/fluorochemicals-market-is-expected-to.html។ បានយកមក 15 October 2013 
Ullmann, Fritz (2008)។ Ullmann's Fibers (2 volumes)។ Weinheim: Wiley-VCH។ ល.ស.ប.អ. 978-3-527-31772-1 
United States Environmental Protection Agency (1996)។ "R.E.D. Facts: Trifluralin"http://www.epa.gov/oppsrrd1/REDs/factsheets/0179fact.pdf។ បានយកមក 17 October 2013 
United States Environmental Protection Agency (2012)។ "Emerging Contaminants – Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoic Acid (PFOA)"។ បានដាក់ទុកឯកសារ ពី[៦] នៅថ្ងៃ 29 October 2013https://web.archive.org/web/20131029202537/http://www.epa.gov/fedfac/pdf/emerging_contaminants_pfos_pfoa.pdf។ បានយកមក 4 November 2013 
United States Environmental Protection Agency (2013a)។ "Class I Ozone-depleting Substances"។ បានដាក់ទុកឯកសារ ពី[៧] នៅថ្ងៃ 10 December 2010https://web.archive.org/web/20101210101528/http://www.epa.gov/ozone/science/ods/classone.html។ បានយកមក 15 October 2013 
United States Environmental Protection Agency (2013b)។ "Phaseout of HCFCs (Class II Ozone-Depleting Substances)"http://www.epa.gov/ozone/title6/phaseout/classtwo.html។ បានយកមក 15 October 2013 
Viel, Claude; Goldwhite, Harold (1993)។ "1906 Nobel Laureate: Henri Moissan, 1852–1907"។ ជា Laylin, K. James។ Nobel Laureates in Chemistry, 1901–1992។ Washington: American Chemical Society; Chemical Heritage Foundation។ ទំ. 35–41។ ល.ស.ប.អ. 978-0-8412-2690-6 
Vigoureux, P. (1961)។ "The Gyromagnetic Ratio of the Proton"។ Contemporary Physics 2 (5): 360–366។ អ.វ.ល.:10.1080/00107516108205282 
Villalba, Gara; Ayres, Robert U.; Schroder, Hans (2008)។ "Accounting for Fluorine: Production, Use, and Loss"។ Journal of Industrial Ecology 11: 85។ អ.វ.ល.:10.1162/jiec.2007.1075 
Walsh, Kenneth A. (2009)។ Beryllium Chemistry and Processing។ Materials Park: ASM International។ ល.ស.ប.អ. 978-0-87170-721-5 
Walter, P. (2013)។ "Honeywell Invests $300m in Green Refrigerant"Chemistry Worldhttp://www.rsc.org/chemistryworld/2013/12/honeywell-air-conditioning-green-refrigerant 
Weeks, M. E. (1932)។ "The Discovery of the Elements. XVII. The Halogen Family"។ Journal of Chemical Education 9 (11): 1915–1939។ Bibcode 1932JChEd...9.1915Wអ.វ.ល.:10.1021/ed009p1915 
Werner, N. L.; Hecker, M. T.; Sethi, A. K.; Donskey, C. J. (2011)។ [Expression error: Unrecognized punctuation character "�". "Unnecessary use of Fluoroquinolone Antibiotics in Hospitalized Patients"]។ BMC Infectious Diseases 11: 187–193។ អ.វ.ល.:10.1186/1471-2334-11-187PMC 3145580អ.ស.ផ.ម. 21729289Expression error: Unrecognized punctuation character "�". 
Wiberg, Egon; Wiberg, Nils; Holleman, Arnold Frederick (2001)។ Inorganic Chemistry។ San Diego: Academic Press។ ល.ស.ប.អ. 978-0-12-352651-9 
Willey, Ronald R. (2007)។ Practical Equipment, Materials, and Processes for Optical Thin Films។ Charlevoix: Willey Optical។ ល.ស.ប.អ. 978-0-615-14397-2 
Yaws, Carl L.; Braker, William (2001)។ "Fluorine"។ Matheson Gas Data Book (7th រ.រ.)។ Parsippany: Matheson Tri-Gas។ ល.ស.ប.អ. 978-0-07-135854-5 
Yeung, C. A. (2008)។ "A Systematic Review of the Efficacy and Safety of Fluoridation"។ Evidence-Based Dentistry 9 (2): 39–43។ អ.វ.ល.:10.1038/sj.ebd.6400578អ.ស.ផ.ម. 18584000 (2007)។ 
Young, David A. (1975). Phase Diagrams of the Elements (Report). Lawrence Livermore Laboratory. http://www.osti.gov/bridge/servlets/purl/4010212-0BbwUC/4010212.pdfaccess។ បានយកមក 10 June 2011. 
Zareitalabad, P.; Siemens, J.; Hamer, M.; Amelung, W. (2013)។ "Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) in surface waters, sediments, soils and wastewater – A review on concentrations and distribution coefficients"។ Chemosphere 91 (6): 725។ អ.វ.ល.:10.1016/j.chemosphere.2013.02.024អ.ស.ផ.ម. 23498059 
Zorich, Robert (1991)។ Handbook of Quality Integrated Circuit Manufacturing។ San Diego: Academic Press។ ល.ស.ប.អ. 978-0-323-14055-3