ចំនួនកុំផ្លិច៖ ភាពខុសគ្នារវាងកំណែនានា

ពីវិគីភីឌា
ខ្លឹមសារដែលបានលុបចោល ខ្លឹមសារដែលបានសរសេរបន្ថែម
បន្ទាត់ទី៤៦៖ បន្ទាត់ទី៤៦៖
<math>cos\alpha = \frac{a}{r} ; sin\alpha = \frac{b}{r}\!</math>
<math>cos\alpha = \frac{a}{r} ; sin\alpha = \frac{b}{r}\!</math>
<div style="font-size: 150%; color: Blue;">
<div style="font-size: 150%; color: Blue;">
ទ្រឹស្តីបទ៖</div> បើគេមានទម្រង់ត្រីកោណមាត្រនៃចំនួនកំផ្លិច <math>z_1\!</math> និង <math>z_2\!</math> ដែល <math>z_1 = r_1(cos\alpha_1 + isin\alpha_1)\!</math> និង <math>z_2 = r_2(cos\alpha_2 + isin\alpha_2)\!</math>គេបាន​ <br>
ទ្រឹស្តីបទ៖</div> បើគេមានទម្រង់ត្រីកោណមាត្រនៃចំនួនកំផ្លិច <math>z_1\!</math> និង <math>z_2\!</math> ដែល <math>z_1 = r_1(cos\alpha_1 + isin\alpha_1)\!</math> និង <math>z_2 = r_2(cos\alpha_2 + isin\alpha_2)\!</math> គេបាន​ <br>
ក)​ <math>z_1z_2 = r_1r_2[cos(\alpha + \alpha) + isin(\alpha_1 + \alpha_2)]\!</math><br><br>
ក)​ <math>z_1z_2 = r_1r_2[cos(\alpha + \alpha) + isin(\alpha_1 + \alpha_2)]\!</math><br><br>
ខ) <math>\frac{z_1}{z_2} = \frac{r_1}{r_2}[cos(\alpha_1 - \alpha_2) + isin(\alpha_1 - \alpha_2)]\!</math><br>
ខ) <math>\frac{z_1}{z_2} = \frac{r_1}{r_2}[cos(\alpha_1 - \alpha_2) + isin(\alpha_1 - \alpha_2)]\!</math><br>
បន្ទាត់ទី៧៣៖ បន្ទាត់ទី៧៣៖
<math>(i+i)^{50} = \sqrt{2}^{50}[cos(50 \cdot \frac{\pi}{4}) + isin(50 \cdot \frac{\pi}{4})] = 2^{25}(cos\frac{25\pi}{2} + isin\frac{25\pi}{2}) = 2^{25}[cos(12\pi+\frac{\pi}{2}) + isin(12\pi+\frac{\pi}{2})] = 2^{25}(cos\frac{\pi}{2} + isin\frac{\pi}{2}) \!</math><br><br>
<math>(i+i)^{50} = \sqrt{2}^{50}[cos(50 \cdot \frac{\pi}{4}) + isin(50 \cdot \frac{\pi}{4})] = 2^{25}(cos\frac{25\pi}{2} + isin\frac{25\pi}{2}) = 2^{25}[cos(12\pi+\frac{\pi}{2}) + isin(12\pi+\frac{\pi}{2})] = 2^{25}(cos\frac{\pi}{2} + isin\frac{\pi}{2}) \!</math><br><br>
ដូចនេះ <math>(1+i)^{50}= 2^{25}i = 33554432i\!</math>
ដូចនេះ <math>(1+i)^{50}= 2^{25}i = 33554432i\!</math>
==រឹសទី <math>n\!</math> នៃចំនួនកុំផ្លិច==
==ឫសទី <math>n\!</math> នៃចំនួនកុំផ្លិច==
បើចំនួនកុំផ្លិចមេនសូន្យ Z​ មានរឹសទី n គឺ W គេបាន <math>W^n = Z\!</math>​។ ទំរង់ត្រីកោណមាត្រនៃចំនួនកុំផ្លិច Z និង W គឺ <math> Z = r(cos\theta+isin\theta)\!</math> និង <math> W = s(cos\alpha+isin\alpha)\!</math><br><br>
បើចំនួនកុំផ្លិចមិនសូន្យ Z​ មានឫសទី n គឺ W គេបាន <math>W^n = Z\!</math>​។ ទម្រង់ត្រីកោណមាត្រនៃចំនួនកុំផ្លិច Z និង W គឺ <math> Z = r(cos\theta+isin\theta)\!</math> និង <math> W = s(cos\alpha+isin\alpha)\!</math><br><br>
គេបាន <math>W^n = s^n(cosn\alpha+isinn\alpha)\!</math><br><br>
គេបាន <math>W^n = s^n(cosn\alpha+isinn\alpha)\!</math><br><br>
ដោយ <math>W^n = Z\!</math> គេបាន <math> s^n(cosn\alpha+isinn\alpha) = r(cos\theta+isin\theta)\!</math><br><br>
ដោយ <math>W^n = Z\!</math> គេបាន <math> s^n(cosn\alpha+isinn\alpha) = r(cos\theta+isin\theta)\!</math><br><br>
ចំនួនកុំផ្លិចពីរស្មើគ្នា ម៉ូឌុលរបស់វាក៏ស្មើគ្នាដែរ។
ចំនួនកុំផ្លិចពីរស្មើគ្នា ម៉ូឌុលរបស់វាក៏ស្មើគ្នាដែរ។


ដូចនេះ <math>s^n = r\!</math> ។ ដោយ <math> s>0\!</math> និង <math>r>0\!</math> នាំអោយ <math>s = \sqrt[n]{r}\!</math> ។
ដូចនេះ <math>s^n = r\!</math> ។ ដោយ <math> s>0\!</math> និង <math>r>0\!</math> នាំឲ្យ <math>s = \sqrt[n]{r}\!</math> ។


<math>cosn\alpha + isinn\alpha = cos\theta + isin\theta\!</math><br><br>
<math>cosn\alpha + isinn\alpha = cos\theta + isin\theta\!</math><br><br>
គេបាន <math>cosn\alpha = cos\theta\!</math> នាំអោយ <math>n\alpha = \theta + 2k\pi \ ; \ \alpha = \frac{\theta + 2k\pi}{n} \ ; \ k \in \mathbb{Z}\!</math>។<br><br>
គេបាន <math>cosn\alpha = cos\theta\!</math> នាំឲ្យ <math>n\alpha = \theta + 2k\pi \ ; \ \alpha = \frac{\theta + 2k\pi}{n} \ ; \ k \in \mathbb{Z}\!</math>។<br><br>
ជំនួស <math>\alpha = \frac{\theta + 2k\pi}{n}\!</math> និង <math>s = \sqrt[n]{r}\!</math> ក្នុងទំរង់ត្រីកោណមាត្រនៃចំនួនកុំផ្លិច <math>W</math> គេបាន <math>w = \sqrt[n]{r}[cos(\frac{\theta + 2k\pi}{n}) + isin(\frac{\theta + 2k\pi}{n})]\!</math> ។<br><br>
ជំនួស <math>\alpha = \frac{\theta + 2k\pi}{n}\!</math> និង <math>s = \sqrt[n]{r}\!</math> ក្នុងទម្រង់ត្រីកោណមាត្រនៃចំនួនកុំផ្លិច <math>W</math> គេបាន <math>w = \sqrt[n]{r}[cos(\frac{\theta + 2k\pi}{n}) + isin(\frac{\theta + 2k\pi}{n})]\!</math> ។<br><br>
បើ​គេជំនួស <math>k=0;1;2;...;n-1</math> គេបាន n រឹសទី n​ ផ្សេងៗគ្នានៃ Z​ ។
បើ​គេជំនួស <math>k=0;1;2;...;n-1</math> គេបាន n ឫសទី n​ ផ្សេងៗគ្នានៃ Z​ ។
<div style="font-size: 150%; color: Blue;">
<div style="font-size: 150%; color: Blue;">
ទ្រឹស្តីបទ៖</div>
ទ្រឹស្តីបទ :</div>
បើ <math>Z = r(cos\theta + isin\theta)\!</math> ជាចំនួនកុំផ្លិចមិនសូន្យ​ ហើយ​ n ជាចំនួនគត់វិជ្ជមាននោះ Z មានរឹសទី n គឺ​ :
បើ <math>Z = r(cos\theta + isin\theta)\!</math> ជាចំនួនកុំផ្លិចមិនសូន្យ​ ហើយ​ n ជាចំនួនគត់វិជ្ជមាននោះ Z មានឫសទី n គឺ​ :


<math>w_k = \sqrt[n]{r}[cos(\frac{\theta + 2k\pi}{n}) + isin(\frac{\theta + 2k\pi}{n})]\!</math> បើ k=0;1;2;...;n-1 នោះ Z មានរឹសទី n គឺ <math>w_0;w_1;w_2;...;w_{n-1}\!</math>​ ។<br><br>
<math>w_k = \sqrt[n]{r}[cos(\frac{\theta + 2k\pi}{n}) + isin(\frac{\theta + 2k\pi}{n})]\!</math> បើ k=0;1;2;...;n-1 នោះ Z មានឫសទី n គឺ <math>w_0;w_1;w_2;...;w_{n-1}\!</math>​ ។<br><br>
ឧទាហរណ៍ :​ គណនារឹសទី 6 នៃ -1
ឧទាហរណ៍ :​ គណនាឫសទី 6 នៃ -1


តាង Z = -1 + 0i គេបាន <math>r = \sqrt{1} = 1</math> ។<br><br>
តាង Z = -1 + 0i គេបាន <math>r = \sqrt{1} = 1</math> ។<br><br>
<math>cos\theta = \frac{a}{r} = -1 </math> និង <math>sin\theta = \frac{b}{r} = 0</math> នាំអោយ <math>\theta = \pi</math>។ <br><br>
<math>cos\theta = \frac{a}{r} = -1 </math> និង <math>sin\theta = \frac{b}{r} = 0</math> នាំអោយ <math>\theta = \pi</math>។ <br><br>
<math>Z = -1 + 0i = (cos\pi + isin\pi)\!</math><br><br>
<math>Z = -1 + 0i = (cos\pi + isin\pi)\!</math><br><br>
n = 6 យើងគណនារឹសទី 6 នៃ​ Z = -1 + 0i ។<br><br>
n = 6 យើងគណនាឫសទី 6 នៃ​ Z = -1 + 0i ។<br><br>
<math>w_k = cos(\frac{\pi + 2k\pi}{6}) + isin(\frac{\pi + 2k\pi}{6})\!</math><br><br>
<math>w_k = cos(\frac{\pi + 2k\pi}{6}) + isin(\frac{\pi + 2k\pi}{6})\!</math><br><br>
<math>w_k = cos(\frac{\pi}{6} + \frac{k\pi}{3}) + isin(\frac{\pi}{6} + \frac{k\pi}{3})\!</math> បើ k=0;1;2;3;4;5 គេបាន
<math>w_k = cos(\frac{\pi}{6} + \frac{k\pi}{3}) + isin(\frac{\pi}{6} + \frac{k\pi}{3})\!</math> បើ k=0;1;2;3;4;5 គេបាន


k=0​ នាំអោយ <math>w_0 = cos\frac{\pi}{6} + isin\frac{\pi}{6} = \frac{\sqrt{3}}{2} + \frac{1}{2}i\!</math><br><br>
k=0​ នាំឲ្យ <math>w_0 = cos\frac{\pi}{6} + isin\frac{\pi}{6} = \frac{\sqrt{3}}{2} + \frac{1}{2}i\!</math><br><br>
k=1 នាំអោយ <math>w_1 = cos\frac{\pi}{2} + isin\frac{\pi}{2} = i</math><br><br>
k=1 នាំឲ្យ <math>w_1 = cos\frac{\pi}{2} + isin\frac{\pi}{2} = i</math><br><br>
k=2 នាំអោយ <math>w_2 = cos\frac{5\pi}{6} + isin\frac{5\pi}{6} = -\frac{\sqrt{3}}{2} + \frac{1}{2}i</math><br><br>
k=2 នាំឲ្យ <math>w_2 = cos\frac{5\pi}{6} + isin\frac{5\pi}{6} = -\frac{\sqrt{3}}{2} + \frac{1}{2}i</math><br><br>
k=3 នាំអោយ <math>w_3 = cos\frac{7\pi}{6} + isin\frac{7\pi}{6} = -\frac{\sqrt{3}}{2} - \frac{1}{2}i</math><br><br>
k=3 នាំឲ្យ <math>w_3 = cos\frac{7\pi}{6} + isin\frac{7\pi}{6} = -\frac{\sqrt{3}}{2} - \frac{1}{2}i</math><br><br>
k=4 នាំអោយ <math>w_4 = cos\frac{3\pi}{2} + isin\frac{3\pi}{2} = -i</math><br><br>
k=4 នាំឲ្យ <math>w_4 = cos\frac{3\pi}{2} + isin\frac{3\pi}{2} = -i</math><br><br>
k=5 នាំអោយ <math>w_5 = cos\frac{11\pi}{6} + isin\frac{11\pi}{6} = \frac{\sqrt{3}}{2} -\frac{1}{2}i</math>
k=5 នាំឲ្យ <math>w_5 = cos\frac{11\pi}{6} + isin\frac{11\pi}{6} = \frac{\sqrt{3}}{2} -\frac{1}{2}i</math>


== សូមមើលផងដែរ ==
== សូមមើលផងដែរ ==

កំណែនៅ ម៉ោង១៥:០១ ថ្ងៃសៅរ៍ ទី០៣ ខែវិច្ឆិកា ឆ្នាំ២០១៨

ចំនួនកុំផ្លិច (អង់គ្លេស: complex number) ជាចំនួនដែលអាចសំដែងជាទម្រង់ ដែល និង ជាចំនួនពិត និង ជាឯកតានិមិ្មត ()។

និយមន័យ

  • ឯកតានិមិ្មត
a ជាផ្នែកពិតនៃចំនួនកុំផ្លិច Z (Real Part)
b ជាផ្នែកនិម្មិតនៃចំនួនកុំផ្លិច Z (Imaginary part)

ប្រមាណវិធី

  • ផលបូក:
  • ផលដក:
  • ផលគុណ:
  • ផលចែក:

ប្លង់កុំផ្លិច

លក្ខណៈធរណីមាត្រនៃ និងចំលាស់របស់វាក្នុងប្លង់កុំផ្លិច

តំលៃដាច់ខាតនៃចំនួនកុំផ្លិចឆ្លាស់

  ប្រសិនបើ z ជាចំនួនពិតសុទ្ធ
  ប្រសិនបើ z ជាចំនួននិម្មិតសុទ្ធ
  ប្រសិនបើ z ខុសពីសូន្យ

ប្រភាគនៃចំនួនកុំផ្លិច

ទម្រង់ប៉ូលែរ

កូអរដោនេប៉ូលែក្នុងតម្រុយដេកាត

ផ្ទុយមកវិញ


ទម្រង់ត្រីកោណមាត្រ និង ​ម៉ូឌុលនៃចំនួនកុំផ្លិច

, ដែល ជាម៉ូឌុលនៃ​

ទ្រឹស្តីបទ៖

បើគេមានទម្រង់ត្រីកោណមាត្រនៃចំនួនកំផ្លិច និង ដែល និង គេបាន​

ក)​

ខ)

ទ្រឹស្តីបទ៖

បើ ជាចំនួនកុំផ្លិចគេបាន

លក្ខណៈ

គេឲ្យ និង ជាចំនួនកុំផ្លិចគេបាន

ក)​
ខ)
គ)

ស្វ័យគុណទី​ ​ នៃចំនួនកុំផ្លិច

គេមាន

តាមរូបមន្ត

គេបាន





........................................................................................



ជាទូទៅ៖​

គ្រប់ គេទាញបាន ហៅថា ទ្រឹស្តីបទដឺម័រ។

ឧទាហរណ៍​: គណនា​

តាង គេបាន
តាមទ្រឹស្តីបទដឺម័រ



ដូចនេះ

ឫសទី នៃចំនួនកុំផ្លិច

បើចំនួនកុំផ្លិចមិនសូន្យ Z​ មានឫសទី n គឺ W គេបាន ​។ ទម្រង់ត្រីកោណមាត្រនៃចំនួនកុំផ្លិច Z និង W គឺ និង

គេបាន

ដោយ គេបាន

ចំនួនកុំផ្លិចពីរស្មើគ្នា ម៉ូឌុលរបស់វាក៏ស្មើគ្នាដែរ។

ដូចនេះ ។ ដោយ និង នាំឲ្យ



គេបាន នាំឲ្យ

ជំនួស និង ក្នុងទម្រង់ត្រីកោណមាត្រនៃចំនួនកុំផ្លិច គេបាន

បើ​គេជំនួស គេបាន n ឫសទី n​ ផ្សេងៗគ្នានៃ Z​ ។

ទ្រឹស្តីបទ៖

បើ ជាចំនួនកុំផ្លិចមិនសូន្យ​ ហើយ​ n ជាចំនួនគត់វិជ្ជមាននោះ Z មានឫសទី n គឺ​ :

បើ k=0;1;2;...;n-1 នោះ Z មានឫសទី n គឺ ​ ។

ឧទាហរណ៍ :​ គណនាឫសទី 6 នៃ -1

តាង Z = -1 + 0i គេបាន

និង នាំអោយ



n = 6 យើងគណនាឫសទី 6 នៃ​ Z = -1 + 0i ។



បើ k=0;1;2;3;4;5 គេបាន

k=0​ នាំឲ្យ

k=1 នាំឲ្យ

k=2 នាំឲ្យ

k=3 នាំឲ្យ

k=4 នាំឲ្យ

k=5 នាំឲ្យ

សូមមើលផងដែរ