ក្នុងគណិតវិទ្យា អាំងតេក្រាលត្រីកោណមាត្រ(trigonometric integrals) គឺជាគ្រួសារនៃអាំងតេក្រាលដែលទាក់ទងនឹងអនុគមន៍ត្រីកោណមាត្រ។ អាំងតេក្រាលត្រីកោណមាត្រគ្រឹះមួយចំនួន ត្រូវបានពិភាក្សានៅក្នុងតារាងអាំងតេក្រាលនៃអនុគមន៍ត្រីកោណមាត្រ ។
និយមន័យអាំតេក្រាលស៊ីនុសផ្សេងគ្នា គឺ
គឺជាព្រីមីទីវនៃ ដែលសូន្យចំពោះ
គឺជាព្រីមីទីវនៃ ដែលសូន្យចំពោះ
យើងបាន
ចំនាំ ៖ គឺជាអនុគមន៍ស៊ីនុសកាឌីណាល់(sinc function) ហើយនិង អនុគមន៍បេស៊ែលស្វែរទីសូន្យ(the zeroth spherical Bessel function) ។
និយមន័យអាំតេក្រាលកូស៊ីនុសផ្សេងគ្នា គឺ
គឺជាព្រីមីទីវនៃ ដែលសូន្យចំពោះ ។
យើងបាន
អាំងតេក្រាស៊ីនុសអ៊ីពែបូលីក:
អាំងតេក្រាលកូស៊ីនុសអ៊ីពែបូលីក:
ដែល គឺជាចំនួនថេរអឺលែរ-ម៉ាសឆេរ៉ូនី(Euler-Mascheroni constant) ។
ពន្លាតជាច្រើនអាចត្រូវគេប្រើ ដើម្បីកំនត់តំលៃនៃអាំងតេក្រាលត្រីកោណមាត្រ ដោយផ្អែកលើតំលៃអាគុយម៉ង់ ។
ស៊េរីអាស៊ីមតូត (ចំពោះអាគុយម៉ង់ធំ)
[កែប្រែ]
ស៊េរីនេះគឺមិនទាល់(divergent) បើទោះបីជាអាចត្រូវគេប្រើ សំរាប់ប៉ាន់ស្មានតំលៃពិតប្រាកដត្រង់ ។
ស៊េរីទាល់(Convergent series)
[កែប្រែ]
ស៊េរីទាំងនេះទាល់ត្រង់គ្រប់ បើទោះបីចំពោះ ការកំនត់តំលៃគឺយឺត និងមិនត្រឹមត្រូវ បើនៅគ្រប់ចំនុចទាំងអស់។
អនុគមន៍ គឺត្រូវបានគេហៅថា អាំងតេក្រាលអិចស្ប៉ូណង់ស្យែល ។ វាមានទំនាក់ទំនងយ៉ាងជិតស្និតនឹង Si និង Ci:
ដោយ អនុគមន៍ដែលទាក់ទងនីមួយៗគឺជាវិភាគ លើកលែងតែផ្នែកដែលត្រូវគេកាត់ត្រង់តំលៃអវិជ្ជមាននៃអាគុយម៉ង់ ផ្ទៃនៃសុពលភាពនៃទំនាក់ទំនង គឺអាចមានដល់ ។ (ក្រៅពីតំលៃនេះ តួបន្ថែមដែលជាកត្តាអាំងតេក្រាលនៃ លេចចេញក្នុងកន្សោម)។