គណិតវិទ្យា

ដោយវិគីភីឌា
Jump to navigation Jump to search
សាស្រ្ដាចារ្យគណិតវិទ្យាក្រិច

គណិតវិទ្យា ឬគណិតសាស្ត្រ គឺជាការសិក្សាអំពី បរិមាណ លេខរចនាសម្ពន័្ធ រូបរាង ហើយនិងការផ្លាស់ប្ដូរ ។ គណិតសាស្រ្ដ អាចជាការស្វែងរកនូវគំរូ ប្រមាណវិធីបង្កើត រូបមន្ដថ្មីៗ ហើយត្រូវបង្កើត អោយពិតប្រាកដ ដោយភាពតឹងរ៉ឹង ​នាំមកនូវភាពសុចរិត និង មាន អត្ថន័យគ្រប់គ្រាន់ ផងដែរ ។

យើងអាចនិយាយបាន ផងដែរថា៖ គណិតសាស្រ្ដ គឺជាមុខរបរ​របស់ មនុស្សគ្រប់គ្នា ដែលយើងត្រូវតែរៀន ហើយមនុស្ស​ជាច្រើន បានរកឃើញ នូវវត្ថុផ្សេង ៗ

ដើម្បីជួយសំរួលដល់ ការងារប្រចាំថ្ងៃ បានយ៉ាងប្រសើរបំផុត ទៀតផង ។ ផ្នែកដែលសំខាន់បំផុត របស់គណិតវិទ្យានោះគឺ

  • សម្រាប់ដោះស្រាយ បញ្ហាជាច្រើន ដែលកើតមាន​ទើ្បង ក្នុងពិភព​លោ​កយើង​នេះ​ បានយ៉ាងប្រពៃ ដូចជា ការគណនា បូក ដក គុណ​ ចែក ទាំងអស់នេះ សុទ្ធតែត្រូវការ គណិតវិទ្យា ទាំងអស់​ ។
  • ដូច្នេះហើយ បានជាមនុស្សជាច្រើន​ តែងចូលចិត្ដសិក្សា និង ប្រើគណិតវិទ្យា ។​​​​​​​​​​​​​​​​​​​​​​​​​​​​​
  • សព្វថ្ងៃនេះ ការងារមួយចំនួនដូចជា ជំនួញ វិទ្យាសាស្រ្ដ វិស្វករ និងសំនង់ ។

រូបភាពនេះ គឹជាការបង្ហាញអំពី គណិតវិទ្យា ដែល មាន ដើមកំនើត ជាយូរណាស់មកហើយ នៅប្រទេសក្រិច


អំពីផ្នែកផ្សេងៗ[កែប្រែ]

គណិតវិទ្យាសិក្សាអំពី៖

  • លេខ(ឧទាហរណ៏ 2+2=4)
  • លេខ(ឧទាហរណ៍ 3+4=5)
  • រចនាសម្ព័ន្ធ : ដូចជាមូលហេតុនៃវត្ថុដែលបានរៀបចំ
  • ការផ្លាស់ប្ដូរ : មូលហេតុនៃភាពខុសគ្នា
    តួលេខរបស់បុព្វបុរសសម័យដើម
    តក្កវិទ្យានៅក្នុងគណិតវិទ្យា

គណិតវិទ្យាប្រើតក្កវិជ្ជា​(វិជ្ជាត្រិះរិះពិចារណារកហេតុផល) ដើម្បីសិក្សាពីរវត្ថុទាំងនោះ និង ដើម្បីបង្កើតជាគោលការណ៏ទូទៅ ដែលនោះជាផ្នែកមានសារះសំខាន់របស់គណិតវិទ្យា។
ដោយសារតែការស្វែងរកនូវរូបមន្ដទាំងឡាយ គណិតវិទ្យាបា​នដោះ​ស្រាយបញ្ហាធំៗជាច្រើនបានយ៉ាងល្អនាពេលបច្ចុប្បន្ននេះ។
តឹងតាងអោយហេតុផលមួយ ដែលជាច្បាប់ដ៏ត្រឹមត្រូវក្នុងគណិតវិទ្យា គឺប្រើបានពិតប្រាកដ ហើយមនុស្សគ្រប់គ្នាព្រមទទួលស្គាល់ដោយឥតប្រកែកបាន ដែលនោះគេអាចហៅថាជាស្វ័យស័ត្សរឺសេចក្ដីសុចរិត។
រូបមន្ដដែលមានតឹកតាងជូនកាលត្រូវបានហៅថា ទ្រឹស្ដីបទ។អ្នកជំនាញក្នុងគណិតវិទ្យា ធ្វើការរៀបចំនិងស្រាវជ្រាវ ដើម្បីបង្កើតនូវទ្រឹស្ដីបទថ្មីៗ ។
ជូនកាលអ្នកជំនាញស្វែងរកនូវគំនិតដែលពួកគេគិតគឺជាទ្រឹស្ដី ប៉ុន្ដែ ពួកគេមិនអាចស្វែងរកនូវតឹកតាងសំរាប់វាបាន។ គំនិតនោះត្រូវបានគេហៅថាជាប្រមាណរឺការស្មាន រហូត់ដល់ពួកគេរកតឹកតាងទាំងនោះឃើញ។

ជូនកាលគណិតវិទូស្វែងរក និង​ សិក្សាអំពីររូបមន្ដ រឺក៏គំនិត ដែលមិនទាន់បានរកឃើញនៅឡើយនៅក្នុងពិភពលោកនេះ។ គំនិត រឺ គោលការណ៏ផ្សេងៗ របស់គណិតវិទូ គឺចាត់ទុកគំនិតដ៏ប្រសើរ ពីព្រោះពួកគេបានពិចារណា​និងធ្វើអោយមានភាពងាយស្រួល និង ល្អប្រសើរត្រឹមត្រូវ។ គំនិត និង រូបមន្ដទាំងនេះគឺរកឃើញក្នុងភាពពិតនៃពិភពលោក បន្ទាប់មកទើបបានសិក្សានៅក្នុងគណិតសាស្រ្ដ។ ហេតុផលទាំងនេះបានកើតឡើងជាយូរណាស់មកហើយ ។
សរុបសេចក្ដីមកការសិក្សា អំពីរគោលការណ៏ និង គំនិតផ្សេងៗនៅក្នុងគណិតសាស្រ្ដ អាចជួយយើងអោយយល់ដឹង និង ស្គាល់ពិភពលោកកាន់តែប្រសើរបំផុត។

ចំនួន ឬ លេខ[កែប្រែ]

លេខធម្មតា (Natural Number) ចំនួនគត់ (Integers) លេខសនិទាន (Rational Number)
ចំនួនពិត (Real Numbers) ​ ចំនួនមិស្សភាគ (Complex Numbers) លេខគណិត (Arithmetic)<br

លេខធម្មតា (Natural Number) ចំនួនគត់ (Integers) លេខសនិទាន (Rational Number)
ចំនួនពិត (Real Numbers) ​ ចំនួនមិស្សភាគ(Complex Numbers) លេខគណិត (Arithmetic)
ចំនួនថេរ (Mathematical constant) បូរណសំខ្យា (Ordinal Number) ចំនួនទិសាភាគ(Cardinal Number)
គ្រឿងជំនួយក្នុងការកត់ត្រាលេខដែលប្រើដោយInca

រចនាសម្ព័ន្ធ[កែប្រែ]

ផ្នែកខ្លះនៃគណិតវិទ្យាសិក្សា អំពីររចនាសម្ព័ន្ធ ដែលជាផ្នែកយ៉ាងសំខាន់ និង មានប្រយោជន៏ច្រើនៈ

ទ្រឹស្ដីចំនួនNumber Theory

លំហ[កែប្រែ]

ការសិក្សាអំពីរធរណីមាត្រក្នុងលំហ ចាប់ផ្ដើមឡើងជាមួយនិងធរណីមាត្រ ក្នុងភាពស្រដៀងគ្នា​ ហើយជាមួយនិងការប្ដូរគំនិតគ្នារវាងរេខាគណិតករ។ត្រីកោណមាត្រសាស្រ្ដ គឺជាសាខារបស់គណិតវិទ្យា ដែលទាក់ទងគ្នា រវាងផ្នែកផ្សេងៗ និង ជ្រុងនៃត្រីកោណ និង ជាមួយមុខងារជាច្រើនរបស់ត្រីកោណមាត្រ។​វាបានផ្សំគ្នារវាង ធរណីមាត្រក្នុងលំហ និង ពីជគណិត ហើយវាបង្កើតបានជាទ្រឹស្ដីពីតាករមួយយ៉ាងល្អ។ បើយើងធ្វើឪភាសកម្មរឺនិយាយសរុបទៅ ការសិក្សាធរណីមាត្រក្នុងលំហំបែបទំនើបនេះ វាជាគំនិតមួយដែលរួមបញ្ចូល ក៏ដូចជាជួយធ្វើអោយកើនឡើងនូវខ្នាតរបស់រេខាគណិតករ ដែលអាចនិយាយបានថាវាដើរតួរជាផ្លូវកណ្ដាលនៃការទំនាក់ទំនងទូទៅ។​ ទាំងពីជគណិត ធរណីមាត្រមានតួនាទីយ៉ាងសំខាន់នៅក្នុងការធ្វើវិភាគីរបស់រេខាគណិតករ​​,​ធ្វើអោយឃើញនូវភាពផ្សេងៗគ្នានៃរេខាគណិតករ និង រេខាគណិតករ នៃពីជគណិត។ក្នុងក្របខ័ណ្ឌដែលធ្វើអោយមានភាពផ្សេងគ្នានៃរេខាគណិតករ គឺជាមោនភាពនៃការ​រកឃើញ និងគណិតសាស្រ្ដជាន់ខ្ពស់(calculus) ដែលបានពិសោធន៏ជាច្រើនដង នៅក្នុងភាពដាច់ដោយលែកនៃវ៉ិចទ័រ និងភាពមានលំនឹងរបស់គណិតសាស្រ្ដជាន់ខ្ពស់។ ក្របខ័ណ្ឌរេខាគណិតក៏នៃពីជគណិត ជាការពិពណ៍នាអំពីរភាពមិនស៊ីគ្នានៃរេខាគណិតករ ដូចជាដំណោះស្រាយ នៃសមីការពហុធា គំនិតរៀចំនៃបរិមាណ និងធរណីមាត្រក្នុងលំហ ហើយនិងការសិក្សាជាក្រុមផងដែរ ដែលការរៀបចំជារចនាសម្ព័ន្ធ និងធរណីមាត្រក្នុងលំហ។​ក្រុមមួយ ដែលស៊ាំទៅនិងការសិក្សាអំពីរធរណីមាត្រក្នុងលំហ ,រចនាសម្ព័ន្ធ និងការបំលាស់ប្ដូរ។

ឯកសារយោង[កែប្រែ]

  • Benson, Donald C., The Moment of Proof: Mathematical Epiphanies, Oxford University Press, USA; New Ed edition (December 14, 2000). ISBN 0-19-513919-4.
  • Boyer, Carl B., A History of Mathematics, Wiley; 2 edition (March 6, 1991). ISBN 0-471-54397-7. — A concise history of mathematics from the Concept of Number to contemporary Mathematics.
  • Courant, R. and H. Robbins, What Is Mathematics? : An Elementary Approach to Ideas and Methods, Oxford University Press, USA; 2 edition (July 18, 1996). ISBN 0-19-510519-2.
  • Davis, Philip J. and Hersh, Reuben, The Mathematical Experience. Mariner Books; Reprint edition (January 14, 1999). ISBN 0-395-92968-7. — A gentle introduction to the world of mathematics.
  • Einstein, Albert (1923). "Sidelights on Relativity (Geometry and Experience)". P. Dutton., Co.
  • Eves, Howard, An Introduction to the History of Mathematics, Sixth Edition, Saunders, 1990, ISBN 0-03-029558-0.
  • Gullberg, Jan, Mathematics — From the Birth of Numbers. W. W. Norton & Company; 1st edition (October 1997). ISBN 0-393-04002-X. — An encyclopedic overview of mathematics presented in clear, simple language.
  • Hazewinkel, Michiel (ed.), Encyclopaedia of Mathematics. Kluwer Academic Publishers 2000. — A translated and expanded version of a Soviet mathematics encyclopedia, in ten (expensive) volumes, the most complete and authoritative work available. Also in paperback and on CD-ROM, and online.
  • Jourdain, Philip E. B., The Nature of Mathematics, in The World of Mathematics, James R. Newman, editor, Dover Publications, 2003, ISBN 0-486-43268-8.
  • Kline, Morris, Mathematical Thought from Ancient to Modern Times, Oxford University Press, USA; Paperback edition (March 1, 1990). ISBN 0-19-506135-7.
  • Monastyrsky, Michael (2001). "Some Trends in Modern Mathematics and the Fields Medal" (PDF). Canadian Mathematical Society. Retrieved 2006-07-28.
  • Oxford English Dictionary, second edition, ed. John Simpson and Edmund Weiner, Clarendon Press, 1989, ISBN 0-19-861186-2.
  • The Oxford Dictionary of English Etymology, 1983 reprint. ISBN 0-19-861112-9.
  • Pappas, Theoni, The Joy Of Mathematics, Wide World Publishing; Revised edition (June 1989). ISBN 0-933174-65-9.
  • Peirce, Benjamin. "Linear Associative Algebra". American Journal of Mathematics (Vol. 4, No. 1/4. (1881). Unknown parameter |, pages= ignored (help).
  • Peterson, Ivars, Mathematical Tourist, New and Updated Snapshots of Modern Mathematics, Owl Books, 2001, ISBN 0-8050-7159-8.
  • Paulos, John Allen (1996). A Mathematician Reads the Newspaper. Anchor. ISBN 0-385-48254-X.
  • Popper, Karl R. (1995). "On knowledge". In Search of a Better World: Lectures and Essays from Thirty Years. Routledge. ISBN 0-415-13548-6.
  • Riehm, Carl (2002). "The Early History of the Fields Medal" (PDF). Notices of the AMS. AMS. 49 (7): 778–782. Unknown parameter |month= ignored (help)
  • Sevryuk, Mikhail B. (2006). "Book Reviews" (PDF). Bulletin of the American Mathematical Society. 43 (1): 101–109. doi:10.1090/S0273-0979-05-01069-4. Retrieved 2006-06-24. Unknown parameter |month= ignored (help)
  • Waltershausen, Wolfgang Sartorius von (1856, repr. 1965). Gauss zum Gedächtniss. Sändig Reprint Verlag H. R. Wohlwend. ASIN B0000BN5SQ ASIN: B0000BN5SQ Check |asin= value (help). ISBN 3-253-01702-8. Check date values in: |year= (help)
  • Ziman, J.M., F.R.S. (1968). "Public Knowledge:An essay concerning the social dimension of science".CS1 maint: Multiple names: authors list (link)

តំណភ្ជាប់ខាងក្រៅ[កែប្រែ]

ស្វែងរកបន្ថែមអំពី គណិតវិទ្យា នៅលើគំរោងផ្សេងៗទៀតរបស់វិគីខាងក្រោម៖
Wiktionary-logo-en.png វិគីនានុក្រមនិយមន័យ
Wikibooks-logo.svg វិគីសៀវភៅសៀវភៅឬសេចក្តីពន្យល់ផ្សេងៗ
Wikiquote-logo.svg វិគីពាក្យពេជន៍ប្រជុំ​ពាក្យពេជន៍​របស់មនុស្ស​ល្បីៗ
Wikisource-logo.svg វិគីបណ្ណាល័យប្រភពអត្ថបទផ្សេងៗ
Commons-logo.svg វិគីមេឌា Commonsពហុមេឌា
Wikinews-logo.svg វិគីពត៌មានពត៌មាន
Wikiversity-logo-en.svg វិគីសកលវិទ្យាល័យប្រភពសិក្សារៀនសូត្រ

ទំព័រគំរូ:WVS

ទំព័រគំរូ:Mathematics-footer