នៅក្នុងគណិតវិទ្យា អនុគមន៍អ៊ីពែបូលីកមានលក្ខណៈស្រដៀងគ្នានឹងអនុគមន៍ត្រីកោណមាត្រធម្មតា។ អនុគមន៍អ៊ីពែបូលីកគ្រឹះសំខាន់ៗរួមមានស៊ីនុសអ៊ីពែបូលីក (តាងដោយ sinh ) កូស៊ីនុសអ៊ីពែបូលីក (តាងដោយ cosh ) និង តង់សង់អ៊ីពែបូលីក (តាងដោយ tanh )។
sinh, cosh និង tanh
csch, sech និងcoth
![{\displaystyle \sinh x={\frac {e^{x}-e^{-x}}{2}}=-i\sin ix\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/dad0c59c24aa72d581963a8a376bb7318480d595)
![{\displaystyle \cosh x={\frac {e^{x}+e^{-x}}{2}}=\cos ix\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/28de4f6818eebc4cd39075cd039a82edaeea1c3c)
![{\displaystyle \tanh x={\frac {\sinh x}{\cosh x}}={\frac {\frac {e^{x}-e^{-x}}{2}}{\frac {e^{x}+e^{-x}}{2}}}={\frac {e^{x}-e^{-x}}{e^{x}+e^{-x}}}={\frac {e^{2x}-1}{e^{2x}+1}}=-i\tan ix\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e9599b17985223982f0e341aa113a0be82cddcf6)
![{\displaystyle \coth x={\frac {\cosh x}{\sinh x}}={\frac {\frac {e^{x}+e^{-x}}{2}}{\frac {e^{x}-e^{-x}}{2}}}={\frac {e^{x}+e^{-x}}{e^{x}-e^{-x}}}={\frac {e^{2x}+1}{e^{2x}-1}}=i\cot ix\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0be0946f7cfd6d23b14c4acd7d20cf53bf80a0a6)
![{\displaystyle \operatorname {sech} x={\frac {1}{\cosh x}}={\frac {2}{e^{x}+e^{-x}}}=\sec {ix}\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/aada0a63d2c3104c3550d3e4c7f8ced7b59172cd)
![{\displaystyle \operatorname {csch} x={\frac {1}{\sinh x}}={\frac {2}{e^{x}-e^{-x}}}=i\,\csc \,ix\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/189364eeed025c1ae3540a79ff02ced56c558985)
ដែល
ជាឯកតានិមិត្មនៃចំនួនកុំផ្លិច (
) ។ ទំរង់នៃចំនួនកុំផ្លិចខាងលើទាញចេញពីរូបមន្តអឺលែរ។
- សំគាល់៖ ក្នុងការបំលែងនៅក្នុងកន្សោមផ្សេងៗ
សំដៅលើ
មិនមែន
ទេ។
អនុគមន៍ច្រាសនៃអនុគមន៍អ៊ីពែបូលីកជាអនុគមន៍លោការីត
[កែប្រែ]
![{\displaystyle \sinh ^{-1}x=\ln \left(x+{\sqrt {x^{2}+1}}\right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/09d24a442c5c72cacd26eb54b1a438316e00e12f)
![{\displaystyle \cosh ^{-1}x=\ln \left(x+{\sqrt {x^{2}-1}}\right);x\geq 1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d41e748b3f1f9d3109d0380e9435df5d53c1d53f)
![{\displaystyle \tanh ^{-1}x={\frac {1}{2}}\ln \left({\frac {1+x}{1-x}}\right);\left|x\right|<1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7122b1a8909539c757b17538208485c3e7031d18)
![{\displaystyle \operatorname {sech} ^{-1}x=\ln \left({\frac {1+{\sqrt {1-x^{2}}}}{x}}\right);0<x\leq 1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a407b10063ace91f5d17a56091e42564424cba4f)
![{\displaystyle \operatorname {csch} ^{-1}x=\ln \left({\frac {1}{x}}+{\frac {\sqrt {1+x^{2}}}{\left|x\right|}}\right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5b280089f41de2a8bad389219a71a4defabf682b)
![{\displaystyle \coth ^{-1}x={\frac {1}{2}}\ln \left({\frac {x+1}{x-1}}\right);\left|x\right|>1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d16c29d668b2a9182aee02c94cb99827bcb253f7)
![{\displaystyle \sinh(-x)=-\sinh x\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e3d142a267964eb67e6fc7bec54f3269ce22a151)
![{\displaystyle \cosh(-x)=\cosh x\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7d71e0752cee526572ae1f0723a8e539a84316f8)
![{\displaystyle \tanh(-x)=-\tanh x\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b48cd09fe94e7f8bdeea8d9f6ce127f868311231)
![{\displaystyle \coth(-x)=-\coth x\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8743c282c6a72cdaf9c742e56f53aeca45b4204d)
![{\displaystyle \operatorname {sech} (-x)=\operatorname {sech} \,x\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/eca2f63a1c8b204a40660f6e865591101c3131eb)
![{\displaystyle \operatorname {csch} (-x)=-\operatorname {csch} \,x\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9735edc0c3a950f62e5a611bf6d96daa17e5dfa5)
ដេរីវេនៃអនុគមន៍អ៊ីពែបូលីក
[កែប្រែ]
![{\displaystyle {\frac {d}{dx}}\sinh(x)=\cosh(x)\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/fe154fb8386a8e985071f5d1c67ab27085a3858d)
![{\displaystyle {\frac {d}{dx}}\cosh(x)=\sinh(x)\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/73f635bc7dc03446757930534bc9b7363d71000f)
![{\displaystyle {\frac {d}{dx}}\tanh(x)=1-\tanh ^{2}(x)={\hbox{sech}}^{2}(x)={\frac {1}{\cosh ^{2}(x)}}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/07688c1e4d5034799af12188d5a13ed16447360d)
![{\displaystyle {\frac {d}{dx}}\coth(x)=1-\coth ^{2}(x)=-{\hbox{csch}}^{2}(x)={\frac {-1}{\sinh ^{2}(x)}}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/65ac2855a87ba3df976b6bd84ea8a36fbb4821ff)
![{\displaystyle {\frac {d}{dx}}\ {\hbox{csch(x)}}=-\coth(x)\ {\hbox{csch(x)}}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c146d3776f3ade69ea88c1658b952e6439373d73)
![{\displaystyle {\frac {d}{dx}}\ {\hbox{sech(x)}}=-\tanh(x)\ {\hbox{sech(x)}}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/61590ecaed35766a6b39cf0529eadac74aca8266)
![{\displaystyle {\frac {d}{dx}}\left(\sinh ^{-1}u\right)={\frac {1}{\sqrt {1+u^{2}}}}\cdot {\frac {du}{dx}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/aaa96db285d88b0acb71f48313aa8cf566df0aee)
![{\displaystyle {\frac {d}{dx}}\left(\cosh ^{-1}u\right)={\frac {1}{\sqrt {u^{2}-1}}}\cdot {\frac {du}{dx}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ac74f21dc67d1eb3ef82d9f540a768966b012521)
![{\displaystyle {\frac {d}{dx}}\left(\tanh ^{-1}u\right)={\frac {1}{1-u^{2}}}\cdot {\frac {du}{dx}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f6422efe9d2d9bbeef32745e21ade5cb00b88163)
![{\displaystyle {\frac {d}{dx}}\left(\operatorname {csch} ^{-1}u\right)={\frac {1}{\left|u\right|{\sqrt {1+u^{2}}}}}\cdot -{\frac {du}{dx}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/49a040cd8a02e3d9d9b618b4d397e85b743ff068)
![{\displaystyle {\frac {d}{dx}}\left(\operatorname {sech} ^{-1}u\right)={\frac {1}{u{\sqrt {1-u^{2}}}}}\cdot -{\frac {du}{dx}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b7ec37cb475ba802b0ee514381ec0b6c8679b81f)
![{\displaystyle {\frac {d}{dx}}\left(\coth ^{-1}u\right)={\frac {1}{1-u^{2}}}\cdot {\frac {du}{dx}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/84b223c96140d0521112bd05f523f0f13cc18dd8)
អាំងតេក្រាលស្តង់ដារនៃអនុគមន៍អ៊ីពែបូលីក
[កែប្រែ]
សំរាប់តារាងពេញលេញនៃអាំងតេក្រាលនៃអនុគមន៍អ៊ីពែបូលីក សូមមើលតារាងអាំងតេក្រាលនៃអនុគមន៍អ៊ីពែបូលីក។
![{\displaystyle \int \sinh ax\,dx={\frac {1}{a}}\cosh ax+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/73afd2753503c736e59bf4dd68a6ef869e8090fa)
![{\displaystyle \int \cosh ax\,dx={\frac {1}{a}}\sinh ax+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8478514124631a7efb7098e4b9c8ce2068ccf050)
![{\displaystyle \int \tanh ax\,dx={\frac {1}{a}}\ln |\cosh ax|+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b818f53a75b2add06b8faa3776134bb80da3bd61)
![{\displaystyle \int \coth ax\,dx={\frac {1}{a}}\ln |\sinh ax|+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/03585b086c936f089fd76d8c69a1667f3b0cb5d8)
![{\displaystyle \int {\frac {du}{\sqrt {a^{2}+u^{2}}}}=\sinh ^{-1}\left({\frac {u}{a}}\right)+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7a8a0b808aa718b091bbf9c44f790e7cbc804cfe)
![{\displaystyle \int {\frac {du}{\sqrt {u^{2}-a^{2}}}}=\cosh ^{-1}\left({\frac {u}{a}}\right)+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/145ce4743614ca7fdb7a4d29b9eaabee336dd52d)
![{\displaystyle \int {\frac {du}{a^{2}-u^{2}}}={\frac {1}{a}}\tanh ^{-1}\left({\frac {u}{a}}\right)+C;u^{2}<a^{2}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8753c3c1526ac7c17e60cea4eb202ee1ca1586ae)
![{\displaystyle \int {\frac {du}{a^{2}-u^{2}}}={\frac {1}{a}}\coth ^{-1}\left({\frac {u}{a}}\right)+C;u^{2}>a^{2}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7c318bc8e83919a8c526b245fd82dbca97eb1875)
![{\displaystyle \int {\frac {du}{u{\sqrt {a^{2}-u^{2}}}}}=-{\frac {1}{a}}\operatorname {sech} ^{-1}\left({\frac {u}{a}}\right)+c}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0e96615832e31eb28e505e269cae29f6a20c43c1)
![{\displaystyle \int {\frac {du}{u{\sqrt {a^{2}+u^{2}}}}}=-{\frac {1}{a}}\operatorname {csch} ^{-1}\left|{\frac {u}{a}}\right|+c}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f1ab4cd6c337e27a8308c4325591788389661164)
ក្នុងកន្សោមខាងលើ C ត្រូវបានគេហៅថា ថេរអាំងតេក្រាល។
អនុគមន៍ខាងលើគ៏អាចសំដែងជាសេរីតាយល័រផងដែរ។
![{\displaystyle \sinh x=x+{\frac {x^{3}}{3!}}+{\frac {x^{5}}{5!}}+{\frac {x^{7}}{7!}}+\cdots =\sum _{n=0}^{\infty }{\frac {x^{2n+1}}{(2n+1)!}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5136eef875e847483a99cd2fdeb3fe99ed38ce76)
![{\displaystyle \cosh x=1+{\frac {x^{2}}{2!}}+{\frac {x^{4}}{4!}}+{\frac {x^{6}}{6!}}+\cdots =\sum _{n=0}^{\infty }{\frac {x^{2n}}{(2n)!}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ddc1170e1ca7c7a38152fcfe841b60deb418af4f)
![{\displaystyle \tanh x=x-{\frac {x^{3}}{3}}+{\frac {2x^{5}}{15}}-{\frac {17x^{7}}{315}}+\cdots =\sum _{n=1}^{\infty }{\frac {2^{2n}(2^{2n}-1)B_{2n}x^{2n-1}}{(2n)!}},\left|x\right|<{\frac {\pi }{2}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c95c1e032cc52b10a5e058066523bcd4564f2143)
(សេរីឡូរង់)
![{\displaystyle \operatorname {sech} \,x=1-{\frac {x^{2}}{2}}+{\frac {5x^{4}}{24}}-{\frac {61x^{6}}{720}}+\cdots =\sum _{n=0}^{\infty }{\frac {E_{2n}x^{2n}}{(2n)!}},\left|x\right|<{\frac {\pi }{2}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8b380d5d7c7c0d493b34a9d5d38d9d6b123812a6)
(សេរីឡូរង់ Laurent series)
ដែល
គឺជាចំនួនប៊ែរនូយីទី ![{\displaystyle n\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/766f836820041aaf3284d81c2b5f9d1c506f3cb2)
គឺជាចំនួនអឺលែរទី ![{\displaystyle n\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/766f836820041aaf3284d81c2b5f9d1c506f3cb2)
លក្ខណៈដូចគ្នានឹងអនុគមន៍ត្រីកោណមាត្រ
[កែប្រែ]
![{\displaystyle \sinh(x+y)=\sinh x\cosh y+\cosh x\sinh y\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2cb5496605148558188bb4b7368daa9660145954)
![{\displaystyle \cosh(x+y)=\cosh x\cosh y+\sinh x\sinh y\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0c6f60586b2490a6a7cbfc8f7b86cc9f4aca01ff)
![{\displaystyle \tanh(x+y)={\frac {\tanh x+\tanh y}{1+\tanh x\tanh y}}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0dd1b4d8b1811a3b6101f9e9388c6c6ec415fe24)
រូបមន្តមុំឌុប
![{\displaystyle \sinh 2x\ =2\sinh x\cosh x\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e3cd93d9c40bb0e6e6cee1258fcc5465f63fd41f)
![{\displaystyle \cosh 2x\ =\cosh ^{2}x+\sinh ^{2}x=2\cosh ^{2}x-1=2\sinh ^{2}x+1\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/54eb58856a950bc60b6d5275dfc4e4af130fc76c)
រូបមន្តកន្លះមុំ
![{\displaystyle \cosh ^{2}{\frac {x}{2}}={\frac {\cosh x+1}{2}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5703009982a51c2ce7822ebd0e4f5d535f7f7a0f)
![{\displaystyle \sinh ^{2}{\frac {x}{2}}={\frac {\cosh x-1}{2}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7401fd7909d6558487facef641caaab0a1c2f463)
![{\displaystyle \tanh ^{2}x=1-\operatorname {sech} ^{2}x}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7f90836e864404f04c6f8528de4972b1d4ba2efa)
![{\displaystyle \coth ^{2}x=1+\operatorname {csch} ^{2}x}](https://wikimedia.org/api/rest_v1/media/math/render/svg/cd9ddaa029c3f8da2cd33dfc0111e8acff66f434)
ដេរីវេនៃ
គឺ
និង ដេរីវេនៃ
គឺ
។
ទំនាក់ទំនងរវាងអនុគមន៍អ៊ីពែបូលីកនិងអនុគមន៍អិចស្ប៉ូណង់ស្យែល
[កែប្រែ]
ទាញចេញពីនិយមន័យនៃស៊ីនុសអ៊ីពែបូលីក និង កូស៊ីនុសអ៊ីពែបូលីក យើងបានលក្ខណៈដូចខាងក្រោម៖
![{\displaystyle e^{x}=\cosh x+\sinh x\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7ef3dd9fbc015a3500fb07ab58776847c046afcf)
និង
![{\displaystyle e^{-x}=\cosh x-\sinh x.\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/60878d213c6570c9d56362815b2dc013ab278991)
ដោយផ្អែកលើរូបមន្តអឺលែរ កន្សោមទាំងនេះមានលក្ខណៈស្រដៀងគ្នានិងកន្សោមស៊ីនុស និងកូស៊ីនុស ដែលវាជាផលបូកនៃអិចស្ប៉ូណង់ស្យែលកុំផ្លិច។
ទំនាក់ទំនងចំពោះអនុគមន៍ត្រីកោណមាត្រធម្មតាគឺត្រូវបានអោយដោយរូបមន្តអឺលែរចំពោះចំនួនកុំផ្លិច៖
![{\displaystyle e^{ix}=\cos x+i\;\sin x}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ebb4cc4188617d58bda0dce43f98703b6627007e)
![{\displaystyle e^{-ix}=\cos x-i\;\sin x}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0b7778f8ae41795182428c3567fbebeec64cbdd7)
ដូច្នេះ
![{\displaystyle \cosh ix={\frac {e^{ix}+e^{-ix}}{2}}=\cos x}](https://wikimedia.org/api/rest_v1/media/math/render/svg/45f8c9e27988e0b954fd78671df061cce24ea849)
![{\displaystyle \sinh ix={\frac {e^{ix}-e^{-ix}}{2}}=i\sin x}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0ffc38030e235b1dc45ffdd0fe3fd81b199e95a2)
![{\displaystyle \tanh ix=i\tan x\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c0f5afafaa14ea41f5e7439e3a2c905141516872)
![{\displaystyle \cosh x=\cos ix\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/53566b9877b11f34b7b27bdf17d4a68dd3da7bb0)
![{\displaystyle \sinh x=-i\sin ix\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c9acfb8a6ab10fcaa641b462fb69e022e9aabfdc)
![{\displaystyle \tanh x=-i\tan ix\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/850c0fc502268e97af08452b7698e5fa43becd4d)
អនុគមន៍អ៊ីពែលីកក្នុងប្លង់កុំផ្លិច
|
|
|
|
|
|
|
|
|
|
|
|